• Title/Summary/Keyword: Carbon stock density

Search Result 28, Processing Time 0.017 seconds

Mapping of Spatial Distribution for Carbon Storage in Pinus rigida Stands Using the National Forest Inventory and Forest Type Map: Case Study for Muju Gun (국가산림자원조사 자료와 임상도를 활용한 리기다소나무림의 탄소 저장량에 대한 공간분포도 작성: 무주군의 사례로)

  • Seo, Yeonok;Jung, Sungcheol;Lee, Youngjin
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.2
    • /
    • pp.258-266
    • /
    • 2017
  • This study was conducted to develop a carbon storage distribution map of Pinus rigida stands in Muju-gun by using of the National Forest Inventory data and digital forest map. The relationships between the stand variables such as height, age, diameter at breast height (DBH), crown density and aboveground biomass of Pinus rigida were analyzed. The results showed that the crown density had the highest positive correlation with a value of 0.74 followed by the height variable with value of 0.61. The aboveground biomass regression models were developed to estimate biomass and carbon storage map. The results of this study showed that the average carbon storage was 58.2 ton C/ha while the total carbon stock of rigida pine forests in Muju area was estimated to be 430,963 C ton.

Aboveground biomass, growth and yield for some selected introduced tree species, namely Cupressus lusitanica, Eucalyptus saligna, and Pinus patula in Central Highlands of Ethiopia

  • Tesfaye, Mehari Alebachew;Gardi, Oliver;Anbessa, Tesfaye Bekele;Blaser, Jurgen
    • Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.8-25
    • /
    • 2020
  • Background: Species of the genera Eucalyptus, Cupressus, and Pinus are the most widely planted tree species in the country in general and in Chilimo dry Afromontane forest in particular. Eucalyptus covers 90% of the total planted forest area in the country. However, only limited information exists in the country regarding aboveground biomass (AGB), belowground biomass (BGB), growth, and yield. This study was conducted to assess the variables on 25 and 30 years of age for three planted species: Cupressus lusitanica, Eucalyptus saligna, and Pinus patula in Chilimo plantation forest, in the Central Highlands of Ethiopia. A two-times inventory was conducted in 2012 and 2017. A total of nine square sampled plots of 400 ㎡ each, three plots under Cupressus lusitanica, 3 Eucalyptus saligna, and 3 Pinus patula were used for data collection. Data on height, diameter, soil, and tree stumps were collected. Percent C, % N, and bulk density was performed following chemical procedure. Results: The aboveground biomass ranged from 125.76 to 228.67 t C ha-1 and the basal area and number of stems from 3.76 to 25.50 ㎡ ha-1 and 483 to 1175 N ha-1, respectively. The mean annual basal area and volume increment were between 0.97 and 1.20 ㎡ ha-1 year-1 and 10.79 and 16.22 ㎥ ha-1 year-1. Both carbon and nitrogen stock of the planted forest was non-significant among the tree species. Conclusion: The aboveground biomass, growth, and yield significantly varied among the species. Cupressus lusitanica had the highest aboveground biomass, volume, and basal area, while Eucalyptus saligna had the lowest value. To a depth of 1 m, total carbon stored ranged from 130.13 to 234.26 t C ha-1. The total annual carbon sequestration potential was 12,575.18 t CO2 eq. Eucalyptus has the highest carbon stock density and growth rate than other species.

Green and Healthy Living in a High-rise, High Density Urban Environment: The Hong Kong Housing Authority's Experience

  • Fung, Ada Y.S.
    • Land and Housing Review
    • /
    • v.5 no.3
    • /
    • pp.131-136
    • /
    • 2014
  • The Hong Kong Housing Authority (HKHA) develops and implements a public housing programme to meet the housing needs of people who cannot afford private rental housing. The HKHA has an existing stock of about 740,000 public rental flats (PRH). According to the 2014 Policy Address, the Government aims to provide an average of about 20,000 PRH units and about 8,000 Home Ownership Scheme (HOS) units per year. We care for the environment. In developing new housing estates, we conduct thorough environmental studies such as microclimate studies and air ventilation assessment, and use passive design to harness the natural characteristics of our sites. We employ environment-friendly design and construction methods, using modular flat design, pre-cast and pre-fabricated construction techniques as well as recycled, green construction materials. We conduct Carbon Emission Estimation for all our projects, conserve the use of natural resources and reduce wastes throughout the life cycle of buildings. We care for people. We adopt the principles of Universal Design and Barrier Free Access for the convenience and welfare of people of all ages and abilities. We carry out Community Engagement to collect stakeholders' views and aspirations, and incorporate them in the design of our projects. We also carry out surveys of residents' views after the occupation of new estates to gauge our success and identify areas for improvement.

Quantifying Litterfall Input from the Stand Parameters of Korean Red Pine (Pinus densiflora S. et Z.) Stands in Gyeongnam Province

  • Kim, Choonsig;Baek, Gyeongwon;Choi, Byeonggil;Baek, Gyeongrin;Kim, Hojin
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.569-576
    • /
    • 2021
  • This study developed an estimation model for litterfall input using the stand parameters (basal area, stand density, mean DBH, and carbon stocks of the aboveground tree biomass) collected from the Korean red pine (Pinus densiflora S. et Z.) stands of seven regions in Gyeongsangnam-do. The mean annual litterfall was 2,779 kg ha-1 year-1 for needles, 883 kg ha-1 year-1 for miscellaneous, 611 kg ha-1 year-1 for broadleaved, 513 kg ha-1 year-1 for branches, and 340 kg ha-1 year-1 for bark litter. The mean annual total litterfall was 5,051 kg ha-1 year-1. Litterfall components were significantly correlated with stand parameters, except for broadleaved litter. A stronger correlation was observed between the carbon stock of the aboveground tree biomass and all the litterfall components compared with the other stand variables. The allometric equations for all the litterfall components were significant (P < 0.05), with the stand parameters accounting for 5%-43% and 8%-42% of the variation in the needle litter and total litterfall, respectively. The results indicated that the annual litterfall inputs of the Korean red pine stands on a regional scale can be effectively estimated by allometric equations using the basal area and carbon stocks of the aboveground tree biomass.

Relationship between Grain Size and Organic Carbon Content of Surface Sediments in the Major Estuarine Areas of Korea (국내 주요 하구역 표층퇴적물의 입도와 유기탄소 함량 관계)

  • BOO-KEUN KHIM;JU-YEON YANG;HYUK CHOI;KWANGKYU PARK;KYUNG HOON SHIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.4
    • /
    • pp.158-177
    • /
    • 2023
  • An estuary is a transitional water area that links the land and sea through rivers and streams, transporting various components from the land to the sea, which plays an important role in determining primary productivity in the coastal environment, and this coastal ecosystem captures a huge amount of carbon into biomass, known as blue carbon, which mitigates climate change as a potential carbon reservoir. This study examined the variation of mean grain size and organic carbon content of the surface sediments for 6 years and analyzed their relationship in the western and southern estuarine areas (Han River Estuary, Geum River Estuary, Yeongsan River Estuary, Seomjin River Estuary, and Nakdong River Estuary) and the East Sea upwelling area. During the sampling period (2015 to 2020), seasonal variation of both properties was not observed, because their variations might be controlled by diverse oceanographic environments and hydrographic conditions within each survey area. However, despite the synoptic problem of all samples, the positive relationship was obtained between the averages of mean grain size and organic carbon content, which clearly distinguishes each survey area. The unique positive relationship in all estuarine areas implies that the same process by sediment clay particles is important in the organic carbon accumulation. However, additional important factor may be expected in the organic carbon accumulation in the East Sea upwelling area. Further necessary data (sedimentation rate, dry bulk density etc) should be required for the estimation of carbon stock to evaluate the major estuaries in Korea as potential carbon reservoirs in the coastal environment.

Short-term Effect of Thinning on Aboveground Carbon Storage in Korean Pine (Pinus koraiensis) Plantation (간벌이 잣나무 조림지 지상부 탄소저장량에 미치는 초기 영향)

  • Hwang, Jaehong;Bae, Sang-Won;Lee, Kyung Jae;Lee, Kwang-Soo;Kim, Hyun-Seop
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.6
    • /
    • pp.605-610
    • /
    • 2008
  • This study was carried out to investigate the short-term (3 years) effect of thinning on aboveground carbon storage for 34-year-old (site 1) and 45-year-old (site 2) Korean pine (Pinus koraiensis Siebold et Zuccarini) plantations with different diameter class and site quality located in Gwangneung experimental forest. Thinning was manually carried out in consideration of basal area in 2004 (site 1 : 30% and 60% of basal area removed and site 2 : 60% of basal area removed). In 2004 and 2007, DBH and tree height were measured to analyze the changes in carbon storage after thinning. In the sites of 60% of basal area removed, although the mean DBH of site 1 was higher than that of site 2, mean annual carbon storage increment in site 2 ($6.5Mg\;C\;ha^{-1}yr^{-1}$) was about 3 times higher than that in site 1 ($2.3Mg\;C\;ha^{-1}yr^{-1}$). The reason for this result was probably due to higher stem density and site quality in site 2 compared to site 1. In site 2, mean annual carbon storage increment in thinned plot ($6.5Mg\;C\;ha^{-1}yr^{-1}$) was about 1.3 times higher than that in control ($5.2Mg\;C\;ha^{-1}yr^{-1}$). The results suggest that the stem density and site quality may be much more related to the aboveground carbon storage compared to diameter class. In addition, it is needed to consider these two factors for determining whether thinning is a feasible management alternative for the increase in aboveground carbon sequestration.

Biomass Expansion Factors for Pinus densiflora in Relation to Ecotype and Stand Age (소나무의 생태형과 임령에 따른 물질 현존량 확장계수)

  • Park, In Hyeop;Park, Min Su;Lee, Kyeong Hak;Son, Yeong Mo;Seo, Jeong Ho;Son, Yowhan;Lee, Young Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.441-445
    • /
    • 2005
  • Researches on estimating national-scaled forest biomass are being carried out to quantify the carbon stock of forests with the Kyoto Protocol. In general, estimates of national-scaled forest biomass are based on forest inventory data which provides estimates of forest area, stem volume, and growth of stem by age classes. Estimates of forest biomass are, however, obtained by converting stem volumes to dry weight with stem density and thereafter to whole tree biomass with biomass expansion factors (ratios of whole tree dry weight to stem dry weight). Pinus densiflora is widely distributed and one of the most economically important timber species in Korea. The species are largely grouped into two ecotypes of Geumgang and Jungbu. Stems of Geumgang type trees are straight and high compared to those of Jungbu type trees. The objective of this study was to determine and compare stem density and biomass expansion factors fore two ecotypes of Pinus densiflora according to stand age. Stem density of both ecotypes of Pinus densora increased and biomass expansion factors of them decreased with increasing tree age. In he same age class, stem density and biomass expansion factor of Geungang type Pinus densiflora were lower than those of Jungbu type Pinus densiflora. There were statistically significant differences in stem density and biomass expansion factors between Geumgang type and Jungbu type Pinus densiflora in 0-20-year-old stands and 40-60-year-old stands. Our results suggested that the reliability of the national forest biomass inventory could be improved by applying the ecotype- and age-dependent stem density and biomass expansion factors.

Developing Dynamic DBH Growth Prediction Model by Thinning Intensity and Cycle - Based on Yield Table Data - (간벌강도 및 주기에 따른 동적 흉고직경 생장예측 모형개발 - 기존 수확표 자료를 기반으로 -)

  • Kim, Moonil;Lee, Woo-Kyun;Park, Taejin;Kwak, Hanbin;Byun, Jungyeon;Nam, Kijun;Lee, Kyung-Hak;Son, Yung-Mo;Won, Hyung-Kyu;Lee, Sang-Min
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.266-278
    • /
    • 2012
  • The objective of this study was developing dynamic stand growth model to predict diameter at breast height (DBH) growth by thinning intensity and cycle for major tree species of South Korea. The yield table, one of static stand growth models, constructed by Korea Forest Service was employed to prepare dynamic stand growth models for 8 tree species. In the process of model development, the thinning type was designated to thinning from below and equations for predicting the DBH change after thinning by different intensities was generated. In addition, stand density (N/ha), age and site index were adopted as explanatory variables for DBH prediction model. Thereafter, using the model, DBH growth under various silvicuture through integrating such equations considering thinning intensities, and cycles. The dynamic stand growth model of DBH developed in this study can provide understanding of effectiveness in forest growth and growing stock when thinning practice is performed in forest. Furthermore, results of this study is also applicable to quantitatively assess the carbon storage sequestration capability.