• Title/Summary/Keyword: Carbon soot

Search Result 109, Processing Time 0.027 seconds

Characteristics of Black Carbon Particles in Ambient Air Using a Single Particle Soot Photometer (SP2) in May 2013, Jeju, Korea (SP2 (Single Particle Soot Photometer)를 이용한 제주도 5월 Black Carbon 특성)

  • Oh, Jun;Park, Jinsoo;Lee, Sanguk;Ahn, Joonyoung;Choi, Jinsoo;Lee, Sangdeok;Lee, Yonghwan;Kim, Hyunjae;Hong, Youdeog;Hong, Jihyung;Kim, Jeongho;Kim, SangWoo;Lee, Gang-Woong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.255-268
    • /
    • 2015
  • Single particle soot photometer (SP2) is an advanced instrument capable of real-time measurement of concentration, coating thickness, and size distribution of individual BC particle using laser-induced incandescence. So far, there have been insufficient studies examining the real-time characteristics of BC in Korea. In this study, we examined temporal variations in BC concentration and mass size distribution of BC in volume equivalence diameter at a background site of Aewol, Jeju in May. Average concentration and mass median diameter (MMD) of BC particles measured during the study period (06~ 16 May 2013) were $0.69{\pm}0.48{\mu}g/m^3$ and $196{\pm}17nm$, respectively. The BC concentration measured in Aewol was very similar to that observed in the spring of 2012 in Baengnyeong island, and showed diurnal profiles similar to those in other background areas. MMD of BC ranged from 172 to 222 nm. It was found that the mass size distribution of BC varied depending on the location (ground-based), season, types of air masses, and altitude (aircraft-based).

Development of Anti-Insect Mortar and Concrete using Microcapsule (마이크로 캡슐을 이용한 방충 기능성 모르타르 및 콘크리트의 개발)

  • 박석균;유완재;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.523-526
    • /
    • 2003
  • Functions of the building structures are recently expended, because the structures are getting larger and people's indoor staying times are getting longer. Therefore, various functional materials such as yellow mud, carbon soot, and jade are widely used. But functions of those materials have not permanent and continued an effect. Specially, the development of construction materials containing anti-insect is highly important to delight the environment of residence. This research try to examine to develop the mortar and concrete which contain microcapsules with long-term effect of anti-insect.

  • PDF

Relative Content Evaluation of Single-walled Carbon Nanotubes using UV-VIS-NIR Absorption Spectroscopy

  • Cha, Ok-Hwan;Jeong, Mun-Seok;Byeon, Clare C.;Jeong, Hyun;Han, Jong-Hun;Choi, Young-Chul;An, Kay-Hyeok;Oh, Kyung-Hui;Kim, Ki-Kang;Lee, Young-Hee
    • Carbon letters
    • /
    • v.10 no.1
    • /
    • pp.9-13
    • /
    • 2009
  • We propose an evaluation method of the relative content of single-walled carbon nanotubes (SWCNT) in SWCNT soot synthesized by arc discharge using UV-VIS-NIR absorption spectroscopy. In this method, we consider the absorbance of semiconducting and metallic SWCNTs together to calculate the relative content of SWCNTs with respect to a highly purified reference. Our method provides the more reliable and realistic evaluation of SWCNT content with respect to the whole carbonaceous content than the previously reported method.

Comparison of removal efficiency of diesel particulate filter with different measurement methods in a high-speed marine diesel engine (선박용 고속 디젤엔진에 적용한 디젤미립자 필터의 측정방법에 따른 입자상물질 저감효율 비교 연구)

  • Lee, Ik-Sung;Ko, Dong-Kyun;Moon, Gun-Feel;Nam, Youn-Woo;Kim, Shin-Han;Oh, Young-Taig
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.362-367
    • /
    • 2017
  • This study was conducted to compare the particulate removal efficiency of the developed diesel particulate filter using various measurement methods in a high-speed marine diesel engine. A four-stroke mechanical marine diesel engine is used for the test, which has a maximum output of 403 kW and is coupled to an AC dynamometer to control engine speed and load. The test was conducted based on four steady-state engine operating conditions of E3 engine test cycle for the measurement of PM and soot removal efficiency using partial dilution method considered as gravimetric method and filter smoke number method as light absorption method, respectively. As a result of the removal efficiency measurement according to the application of diesel particulate filter, particulate matter was reduced from 76% to 91% and the soot was reduced by more than 90% while meeting the permissible engine back pressure. From these results, the applicability of diesel particulate filter adopted in high-speed marine diesel engines could be confirmed. In addition, based on the result that the particulate removal efficiency varies with different measurement methods, the necessity of unification of these methods could be identified.

Effects of Biodiesel Fuel on Characteristics of Specific Fuel Consumption and Exhaust Emissions in DJ Diesel Engine;Using Rape Oil (직접분사식 디젤기관에서 연료소비율 및 배기배출물 특성에 미치는 바이오디젤유의 영향;유채유를 중심으로)

  • Lim, J.K.;Choe, S.Y.;Cho, S.G.
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.133-137
    • /
    • 2007
  • An experimental study is conducted to evaluate and compare the use of BiodieseDI Fuel supplements at blend ratio of 10/90(BDF10) and 20/80(BDF20), in four stroke, direct injection diesel engine located at the authors' laboratory. especially this Biodiesel is produced from Rape oil at the authors' laboratory. The tests are conducted using each of the above fuel blends, in the engine working at a speed of 1800rpm and at a various loads. In each test, specific fuel consumption, exhaust emissions such as nitrogen oxides(NOx), carbon monoxide(CO) and Soot are measured. The results of investigation at various operating conditions are as follows (1) Specific fuel consumption is increased average 1.52%, maximum 1.84% at load 25% in case of BDF10, and average 1.98%, maximum 2.80% at load 25% in case of BDF20. (2) CO emission is decreased average 5.14%, maximum 6.09% at load 0% in case of BDF10, and average 7.75%, maximum 9.13% at load 0% in case of BDF 20. (3) NOx emission is increased average 2.97%, maximum 3.74% at load 0% in case of BDF10, and average 3.84%, maximum 4.67% at load 0% in case of BDF20. (4) Soot emission is decreased average 9.36%, maximum 10.85% at load 75% in case of BDF10, and average 11.99%, maximum 13.95% at load 75% in case of BDF20.

  • PDF

A Study of On-line Cleaning Method for Increasing Efficiency in a Combustor (연소로 효율증진을 위한 on-line 세정 방법에 관한 연구)

  • Jang, Hyun-Tae;Han, Seung-Dong;Park, Tae-Sung;Cha, Wang-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.1016-1022
    • /
    • 2010
  • An Experimental study of cleaning solution has been performed on a high capacity steam boiler burning heavy fuel oil to on-line cleaning of deposit. The deposit is mixture of soot, slag, ash, metal oxide and clinker. The traditional technology of deposit cleaning was carried hand-crafted. The conventional technology of boiler cleaning method is mechanical removal by the worker while the boiler shut down operation. In this experiment, the deposit of mixture of soot, slag, ash, metal oxide and clinker has been removed by the cleaning agents without shut down of boiler burning. This study found out the optimum cleaning solution composition. The best results have been obtained when the mixture of ammonium nitrate and $MgNO_3$ were used in cleaning solution. The various transition metal effect was investigated for optimum mixing condition. In this research, the metal compound additive of the clean solution compoition was obtained. The combustion efficiency was improved by on-line cleaning with derived clean solution compoition. On-line cleaning method prevents the fouling and corrosion in the boiler and heat exchanger.

Expansion of Operating Range and Reduction of Engine out Emission in Low Temperature Diesel Combustion with Boosting (과급을 이용한 저온 디젤 연소의 운전영역 확장 및 배기 배출물 저감)

  • Shim, Eui-Joon;Han, Sang-Wook;Jang, Jin-Young;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.31-38
    • /
    • 2009
  • Supercharging system was adopted to investigate the influence of boost pressure on operating range and exhaust emissions by using a supercharger at low temperature diesel combustion (LTC) condition in a 5-cylinder 2.7 L direct injection diesel engine. The experimental parameters such as injection quantity, injection timing, injection pressure and exhaust gas recirculation (EGR) rate were varied to find maximum operating range in LTC condition. As a result of adopting increased boost pressure in LTC, wider operating range was achieved compared with naturally aspirated condition due to increased mixing intensity. Increased boost pressure resulted in lower hydrocarbon (HC) and carbon monoxide (CO) emissions due to increased swirl rate and mixing intensity, which induced complete combustion. Moreover, increased boost pressure in LTC resulted in much lower soot emissions compared with high speed direct injection (HSDI) condition.

Effect of Mixing Ratio of n-heptane Fuel on the Combustion Characteristics of n-butanol Fuel (n-heptane 연료 혼합비에 따른 n-butanol 연료의 연소 특성)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.3
    • /
    • pp.21-26
    • /
    • 2015
  • This study was performed to provide the information of the combustion characteristics of n-butanol fuel in accordance with the n-heptane fuel mixing ratio. The closed homogeneous reactor model was used for the analysis. The analysis conditions were set to 800 K of the initial temperature, 20 atm of initial pressure and 1.0 of equivalence ratio. The results of analysis were compared in terms of combustion temperature, combustion pressure, CO, Soot and $NO_X$ emissions. The results of combustion and exhaust emission characteristics showed that ignition delay was decreased and the combustion temperature was increased as the n-heptane mixing ratio was increased. Also, the carbon monoxide(CO) was slightly decreased however, the soot and nitrogen oxides($NO_X$) increased a little in accordance with the n-heptane fuel mixing ratio. In addition, the pressure difference was almost the same in any conditions.

A Study on Characteristics of DPF for Heavy-duty Diesel Engine on Pollutant Emission Reduction (대형디젤엔진 배출가스 저감을 위한 DPF의 재생특성 연구)

  • Eom, D.K.;Lee, S.H.;Oh, S.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.34-39
    • /
    • 2008
  • The combustion purpose of diesel engine is to reduce the emission of green gas and to produce high output. Generally, the regulation matter of emission gas is largely diveded by 'THC', 'NOx', 'CO' and 'PM'. Among those matters, the most problem is to disgorge into 'PM', the character of diesel combustion. Diesel PM can be controlled using Diesel Particulate Filter, which can effectively reduce the level of soot emissions to ambient background levels. $NO_2$ generated by the DOC is used to combust the carbon collected in the DPF at low temperature. To certificate DPF device that is suitable to domestic circumstances, it is necessary to exactly evaluate the DPF devices according to the regulation of DPF certificate test procedure fur retrofit. To do carry out the above-mentioned description the understanding of that regulation like the standard of PM reduction is needed. In this study the test procedure including test cycle and BPT test condition was examined, and also the test result for specific DPF was analyzed. In every test like field test, PM reduction efficiency test and Seoul-10 mode test, no defect was showed.

  • PDF

Effect of High Temperature and Pressure Conditions on the Combustion Characteristics of n-butanol and n-heptane Fuel (고온, 고압의 분위기 변화가 n-butanol 및 n-heptane 연료의 연소 특성에 미치는 영향)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • The effect of high ambient temperature and pressure conditions on the combustion performance of n-butanol, n-heptane and its mixing fuel (BH 20) were studied in this work. To reveal this, the closed homogeneous reactor model applied and 1000-1200 K of the initial temperature, 20-30 atm of initial pressure and 1.0 of equivalence ratio were set to numerical analysis. It was found that the results of combustion temperature was increased and the ignition delay was decreased when the ambient conditions were elevated since the combustion reactivity increased at the high ambient conditions. On the contrary, under the low combustion temperature condition, the combustion pressure was more influenced by the ambient temperature in the same ambient conditions. In addition, the total mass and the mass density of tested fuels were influenced by the ambient pressure and temperature. Also, soot generation of mixing fuel was decreased than n-heptane fuel due to the oxygen content of n-butanol fuel.