• Title/Summary/Keyword: Carbon sediment

Search Result 314, Processing Time 0.021 seconds

Changes in Benthic Polychaete Community after Fish Farm Relocation in the South Coast of Korea (어류양식장 이전 후 저서다모류 군집 변화)

  • Park, Sohyun;Kim, Sunyoung;Sim, Bo-Ram;Park, Se-jin;Kim, Hyung Chul;Yoon, Sang-Pil
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.943-953
    • /
    • 2021
  • The purpose of this study is to investigate sediment recovery after the relocation of fish cage farms, by examining the changes in sediments and the benthic polychaete community. A preliminary survey was carried out in October 2017, before the relocation of the farms, and monthly surveys were conducted from November 2017 to October 2018 after the farms were moved. Subsequently, it was conducted every 2-3 months until October 2020. The survey was carried out at three stations (Farm1-3) at the location of the removed fish farms and at three control stations (Con1-3) without farms. The overall organic carbon content of the farm stations was higher than the control stations, but it gradually decreased after the farm was demolished, and there was no statistically significant difference about one year after the relocation of the farms (p<0.05). In the benthic polychaete community, abiotic community appeared at the farm stations in the summer, and consequently, the community transitioned to a low-diversity region with the predominant species Capitella capitata, which is an indicator of pollution. Until the abiotic period in the summer of the next year, the species diversity increased and the proportion of indicator species decreased, showing a tendency of recovering the benthic polychaete community, and these changes were repeated every year. In this study, the abiotic community appeared every year owing to the topographical characteristics, but as the survey progressed, the period of abiotic occurrence became shorter and the process of community recovery progressed expeditiously. Biological recovery of sediments after the relocation of the fish farms is still in progress, and it is imperative to study recovery trends through continuous monitoring.

Spatio-Temporal Variation Characteristics of Primary Productivity and Environmental Factors of Shellfish Mariculture in Jaran Bay, Korea (자란만 패류양식어장의 기초생산력 및 환경인자 변동 특성)

  • Lee, Dae In;Choi, Yong-Hyeon;Hong, SokJin;Kim, Hyung Chul;Lee, Won-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.721-734
    • /
    • 2022
  • This study analyzed the spatio-temporal variation characteristics of major environmental factors such as primary productivity (PP), chlorophyll a, nutrients, sinking particle matters, and organic contamination and biochemical composition of surface sediment on a monthly basis for approximately 2 years around shellfish mariculture in Jaran Bay, Korea. In addition, PP in Jaran Bay was compared with that in other coastal areas and related policy plans were proposed. The average PP of the study area was high in summer and autumn with 6.43~115.43 mgC m-2 hr-1 range. This was lower than that in Gamak Bay and Masan Bay, whereas higher than that in Garorim Bay and the West Sea. The PP in coastal waters, where many aquaculture farms were distributed, significantly fluctuated. The different size compositions of phytoplanktons constituting chlorophyll a slightly varied by month, and little restriction existed on the productivity of phytoplanktons owing to the depletion of nutrients. Typically, the Redfield ratio was less than 16, indicating that nitrogen was the limiting factor for the growth of phytoplanktons. The biochemical composition of particulate organic matters in the water column showed the highest carbohydrates, but lipids and protein contents were high in surface sediments. The concentration of TOC and AVS of the surface sediments was high at inside of bay, and sometimes, exceeded the environmental criteria of fishing grounds. The organic C:N ratio of sediments ranged from 8.1 to 10.4 on average. PP had the highest correlation with chlorophyll a, nitrogen and protein of particle organic materials. Recently, chlorophyll a, DIN, and DIP of water column trends tended to decrease, however, the contamination of sediments increased. Considering the annual PP of 125.9 gC m-2 yr-1 and mariculture area (oyster) of 4.97 km2, the annual carbon production from phytoplanktons was estimated to be about 625 tons, and the annual total wet weight of shellfish (oyster) was estimated to be about 6,250 tons.

Evaluation of CH4 Flux for Continuous Observation from Intertidal Flat Sediments in the Eoeun-ri, Taean-gun on the Mid-western Coast of Korea (서해안 태안 어은리 갯벌의 연속관측 메탄(CH4) 플럭스 특성 평가)

  • Lee, Jun-Ho;Rho, Kyoung Chan;Woo, Han Jun;Kang, Jeongwon;Jeong, Kap-Sik;Jang, Seok
    • Economic and Environmental Geology
    • /
    • v.48 no.2
    • /
    • pp.147-160
    • /
    • 2015
  • In 2014, on 31 August and 1 September, the emissions of $CH_4$, $CO_2$, and $O_2$ gases were measured six times using the closed chamber method from exposed tidal flat sediments in the same position relative to the low point of the tidal cycle in the Eoeun-ri, Taean-gun, on the Mid-western Coast of Korea. The concentrations of $CH_4$ in the air sample collected in the chamber were measured using gas chromatography with an EG analyzer, model GS-23, within 6 hours of collection, and the other gases were measured in real time using a multi-gas monitor. The gas emission fluxes (source (+), and sink (-)) were calculated from a simple linear regression analysis of the changes in the concentrations over time. In order to see the surrounding parameters (water content, temperature, total organic carbon, average mean size of sediments, and the temperature of the inner chamber) were measured at the study site. On the first day, across three measurements during 5 hours 20 minutes, the observed $CO_2$ flux absorption was -137.00 to $-81.73mg/m^2/hr$, and the $O_2$ absorption, measured simultaneously, was -0.03 to $0.00mg/m^2/hr$. On the second day using an identical number of measurements, the $CO_2$ absorption was -20.43 to $-2.11mg/m^2/hr$, and the $O_2$ absorption -0.18 to $-0.14mg/m^2/hr$. The $CH_4$ absorption before low tide was $-0.02mg/m^2/hr$ (first day, Pearson correlation coefficient using the SPSS statistical analysis is -0.555(n=5, p=0.332, pronounced negative linear relationship)), and $-0.15mg/m^2/hr$ (second day, -0.915(n=5, p=0.030, strong negative linear relationship)) on both measurement days. The emitted flux after low tide on both measurement days reached a minimum of $+0.00mg/m^2/hr$ (+0.713(n=5, p=0.176, linear relationship which can be almost ignored)), and a maximum of $+0.03mg/m^2/hr$ (+0.194(n=5, p=0.754, weak positive linear relationship)) after low tide. However, the absolute values of the $CH_4$ fluxes were analyzed at different times. These results suggest that rate for $CH_4$ fluxes, even the same time and area, were influenced by changes in the tidal cycle characteristics of surface sediments for understanding their correlation with these gas emissions, and surrounding parameters such as physiochemical sediments conditions.

The Spatio-temporal Distribution of Organic Matter on the Surface Sediment and Its Origin in Gamak Bay, Korea (가막만 표층퇴적물중 유기물량의 시.공간적 분포 특성)

  • Noh Il-Hyeon;Yoon Yang-Ho;Kim Dae-Il;Park Jong-Sick
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • A field survey on the spatio-temporal distribution characteristics and origins of organic matter in surface sediments was carried out monthly at six stations in Gamak Bay, South Korea from April 2000 to March 2002. The range of ignition loss(IL) was $4.6{\sim}11.6%(7.1{\pm}1.6%)$, while chemical oxygen demand(CODs) ranged from $12.25{\sim}99.26mgO_2/g-dry(30.98{\pm}19.09mgO_2/g-dry)$, acid volatile sulfide(AVS) went from no detection(ND)${\sim}10.29mgS/g-dry(1.02{\pm}0.58mgS/g-dry)$, and phaeopigment was $6.84{\sim}116.18{\mu}g/g-dry(23.72{\pm}21.16{\mu}g/g-dry)$. The ranges of particulate organic carbon(POC) and particulate organic nitrogen(PON) were $5.45{\sim}23.24 mgC/g-dty(10.34{\pm}4.40C\;mgC/g-dry)$ and $0.71{\sim}2.99mgN/g-dry(1.37{\pm}0.58mgN/g-dry)$, respectively. Water content was in the range of $43.1{\sim}77.6%(55.8{\pm}5.6%)$, and mud content(silt+clay) was higher than 95% at all stations. The spatial distribution of organic matter in surface sediments was greatly divided between the northwestern, central and eastern areas, southern entrance area from the distribution characteristic of their organic matters. The concentrations of almost all items were greater at the northwestern and southern entrance area than at the other areas in Gamak Bay. In particular, sedimentary pollution was very serious at the northwestern area, because the area had an excessive supply of organic matter due to aquaculture activity and the inflow of sewage from the land. These materials stayed longer because of the topographical characteristics of such as basin and the anoxic conditions in the bottom seawater environment caused by thermocline in the summer. The tendency of temporal change was most prominently in the period of high-water temperatures than low-water ones at the northwestern and southern entrance areas. On the other hand, the central and eastern areas did not show a regular trend for changing the concentrations of each item but mainly showed a higher tendency during the low-water temperatures. This was observed for all but AVS concentrations which were higher during the period of high-water temperature at all stations. Especially, the central and eastern areas showed a large temporal increase of AVS concentration during those periods of high-water temperature where the concentration of CODs was in excess of $20mgO_2/g-dry$. The results show that the organic matters in surface sediments in Gamak Bay actually originated from autochthonous organic matters with eight or less in average C/N ratio including the organic matters generated by the use of ocean, rather than terrigenous organic matters. However, the formation of autochthonous organic matter was mainly derived from detritus than living phytoplankton, indicated the results of the POC/phaeopigment ratio. In addition, the CODs/IL ratio results demonstrate that the detritus was the product of artificial activities such as dregs feeding and fecal pellets of farm organisms caused by aquaculture activities rather than the dynamic of natural ocean activities.

  • PDF