• Title/Summary/Keyword: Carbon reduction

Search Result 2,351, Processing Time 0.031 seconds

A Study on the Reduction Measures of CO2 Emission in the Commercial Sector of Korea (상업부분에 있어서 이산화탄소 저감방안에 관한 연구)

  • Lee, Dong Kun;Jung, Tae Yong;Youn, So Won
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.4
    • /
    • pp.59-72
    • /
    • 1999
  • The purpose of the study is to propose the concrete and realistic alternative measures for $CO_2$ emission reduction on commercial sector. To achieve the purpose, this study adopted AIM/KOREA simulation model modified from AIM(Asia-Pacific Integrated Model) originally developed by Japan National Environmental Research Institute. The results of simulation demonstrate that the $CO_2$ emission from the commercial sector in 1995 was estimated 864 million TC(tons of carbon); however, according to the base scenario, $CO_2$ emission in 2020 is expected to be increased to 1,872 million TC, which is 2.17 times greater than that in 1995. In order to mitigate the ever-increasing $CO_2$ emission, the results of AIM/KOREA simulations under various scenarios showed that the 30-thousand-won carbon tax scenario does not successfully motivate the selection of advanced technology; however, with the 300-thousand-won carbon tax, a substantial amount of $CO_2$ emission reduction by 1.69 million TC from the BaU((Business-as-Usual)scenario is expected to be achieved by year 2020. Such substantial reduction of $CO_2$ emission under the 300-thoudsand-won carbon tax scenario is due to the introduction of advanced technology, such as use of condensing boilers, forced by heavier carbon tax. Under the scenario that presumes the maximum introduction of gas-burning industrial appliances, an 2.66 million TC of $CO_2$ reduction was expected. The results of this study suggest that the $CO_2$ emission reduction measures can be interpreted in many different views. However, if people and industries are fully aware of the economic benefit of energy saving, a certain level of $CO_2$ reduction by a successful introduction of advanced energy saving technology appears to be achieved without carbon tax or subsidies.

  • PDF

Greenhouse Gas Emission Reduction and Economic Benefit Evaluation of Carbon Mineralization Technology using CFBC Ash (순환유동층 석탄재를 이용한 탄소광물화 기술의 온실가스 배출 저감량 및 경제성 분석)

  • Jung, Euntae;Kim, Jeongyun
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.40-52
    • /
    • 2022
  • This study analyzed the amount of carbon dioxide reduction and economic benefits of detailed processes of CO2 6,000 tons plant facilities with mineral carbonation technology using carbon dioxide and coal materials emitted from domestic circulating fluidized bed combustion power plants. Coal ash reacted with carbon dioxide through carbon mineralization facilities is produced as a complex carbonate and used as a construction material, accompanied by a greenhouse gas reduction. In addition, it is possible to generate profits from the sales of complex carbonates and carbon credits produced in the process. The actual carbon dioxide reduction per ton of complex carbonate production was calculated as 45.8 kgCO2eq, and the annual carbon dioxide reduction was calculated as 805.3 tonCO2, and the benefit-cost ratio (B/C Ratio) is 1.04, the internal rate return (IRR) is 10.65 % and the net present value (NPV) is KRW 24,713,465 won, which is considered economical. Carbon mineralization technology is one of the best solutions to reduce carbon dioxide considering future carbon dioxide reduction and economic potential.

Adsorption of Macrocyclic Cobalt Complex on a Glassy Carbon Electrode for the Electrocatalytic Reduction of $O_2$

  • 강찬
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.7
    • /
    • pp.754-760
    • /
    • 1998
  • It was found that the adsorption of a cobalt(III) complex with a macrocyclic ligand, C-meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (hmc), was induced on a glassy carbon electrode by heavily oxidizing the electrode surface. Adsorption properties are discussed. The glassy carbon electrode with the adsorbed complex was employed to see the catalytic activities for the electro-reduction of O2. In the presence of oxygen, reduction of (hmc)Co3+ showed two cathodic waves in cyclic voltammetry. Compared to the edge plane graphite electrode at which two cathodic waves were also observed in a previous study, catalytic reduction of O2 occurred in the potential region of the first wave while it happened in the second wave region with the other electrode. A rotating disk electrode after the same treatment was employed to study the mechanism of the O2 reduction and two-electron reduction of O2 was observed. The difference from the previous results was explained by the different reactivity of the (hmc)CoOOH2+ intermediate, which is produced after the two electron reduction of (hmc)Co3+ in the presence of O2.

Quantification of Carbon Reduction Effects of Domestic Wood Products for Valuation of Public Benefit

  • Chang, Yoon-Seong;Kim, Sejong;Kim, Kwang-Mo;Yeo, Hwanmyeong;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.202-210
    • /
    • 2018
  • This study was carried out to quantify degree of contribution of harvested wood product (HWP) on mitigation of climate change by valuation of public benefits, environmentally and economically. The potential carbon dioxide emission reduction of HWP was estimated by accounting carbon storage effect and substitution effect. Based on 2014 statistics of Korea Forest Service, domestic HWPs were sorted by two categories, such as wood products produced domestically from domestic and imported roundwood. The wood products were divided into seven items; sawnwood, plywood, particle board, fiberboard (MDF), paper (including pulp), biomass (wood pellet) and other products. The carbon stock of wood products and substitution effects during manufacturing process was evaluated by items. Based on the relevant carbon emission factor and life cycle analysis, the amount of carbon dioxide emission per unit volume on HWP was quantified. The amounts of carbon stock of HWP produced from domestic and from imported roundwood were 3.8 million $tCO_{2eq}$., and 2.6 million $tCO_{2eq}$., respectively. Also, each reduction of carbon emission by substitution effect of HWP produced from domestic and imported roundwood was 3.1 million $tCO_{2eq}$. and 2.1 million $tCO_{2eq}$., respectively. The results of this study, the amount of carbon emission reduction of HWP, can be effectively used as a basic data for promotion of wood utilization to revise and establish new wood utilization promotion policy such as 'forest carbon offset scheme', and 'carbon storage labeling system of HWP'.

A Study on the Green Climate Fund under the System of the Carbon Emission Reduction (탄소배출 감축제도하의 녹색기후기금에 관한 연구)

  • Lee, Eun Jung;Pak, Myong Sop
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.58
    • /
    • pp.329-351
    • /
    • 2013
  • Since the Kyoto Protocol was released in 2005, there has been a number of mechanisms about funding and how to allocate the burdens. The UNFCCC(United Nations Framework Convention on Climate Change)have discussed establishing an international fund to support the reduction of a greenhouse gas. As the availability of adaption finance for developing countries increase, it's needed for a way of prioritizing countries. This article analyzes the carbon reduction system that includes a emission trading scheme, a carbon tax and examines GCF(Green Climate Fund)'s role and needs. A solution to finance Green Climate Fund is more preferred a harmonized carbon tax that across all nations with carbon tax. Especially the role of industrialized countries is important that based on their historical responsibility for fossil fuel emission. That is, they should get more shares of the global costs than developing countries.

  • PDF

Kinetics and Catalytic Activity of Carbon-Nickel Nanocomposites in the Reduction of 4-Nitrophenol

  • Li, Jiulong;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.217-222
    • /
    • 2015
  • Carbon-nickel nanocomposites were prepared by the reaction of fullerene ($C_{60}$) and nickel hydroxide in an electric furnace at $700^{\circ}C$ for 2 h. The hybrid carbon-nickel nanocomposites were characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The kinetics and catalytic activity of the carbon-nickel nanocomposites in the reduction of 4-nitrophenol were confirmed by UV-vis spectroscopy.

How does Voluntary Carbon Disclosure (VCD) Induce Changes in Carbon Performance? With the Role of Management Capability

  • Kim, Seonae;Kim, Jong Dae
    • Journal of Environmental Science International
    • /
    • v.30 no.10
    • /
    • pp.863-877
    • /
    • 2021
  • While there a growing interest in Voluntary Carbon Disclosure (VCD), comparatively little is discussed whether the improved quality of voluntary carbon disclosure can lead to subsequent changes in a company's carbon reduction performance. Drawing on companies under the Korean Emission Trading Scheme (ETS) with the contents analysis of their sustainable reports, the present research seeks to address the existing knowledge gaps in the current literature on environmental disclosure. Findings empirically show that an increase in the voluntary carbon disclosure score is positively transformed into changes in carbon performance and further develop that the effect of voluntary carbon disclosure on carbon performance varies depending on changes in management capability with the moderation effect.

A Study on the Purity Change of Silicon Metal According to the Purity of Silica Stone in Metal Silicon Extraction by Thermit Reaction (테르밋 반응을 이용하여 금속실리콘을 추출할 때 규석 순도에 따라 금속실리콘 순도 변화에 대한 고찰)

  • Kim, Jaehee;Han, Jinho;Shin, Hyunmyung
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.19-25
    • /
    • 2017
  • The ways of producing metal silicon include a carbon reduction method, a plasma reduction method, and a thermite reaction method. The carbon reduction process produces metal silicon by metallurgical refining. The carbon reduction method is produced by adding a raw material mixed with quartz and coke to an electric arc furnace which is for carbon reduction. The cost of high energy costs and environmental protection facilities is an issue when producing metal silicon using electric arc furnaces. For this reason, there is no metal silicon production facility in Korea yet. Therefore, the optimal manufacturing conditions by the carbon reduction method are being studied through the experimental facilities by the companies and research institutes. The present study investigated the change of metal silicon purity according to the purity of silicon when extracting metal silicon using the thermit reaction, which has a relatively lower manufacturing cost than the carbon reduction method.

Carbon Dioxide Reduction to Alcoholson Perovskite-Type $La_{0.9}$$Sr_{0.1}$$CuO_3$ Electrodes (페로브스카이트 ($La_{0.9}$$Sr_{0.1}$$CuO_3$) 전극에서 이산화탄소의 전해환원에 의한 알콜류 생성)

  • 김태근;임준혁
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.677-682
    • /
    • 1996
  • The electrochemical carbon dioxide reduction to produce acetaldehyde, methanol and ethanol is investigated by using perovskite type electrode ($La_{0.9}$$Sr_{0.1}$$CuO_3$). The experiments were Performed under 100 mA/cm2 and -2 to -2.5 V vs. Ag/AgCl. The highest faradaic efficiencies for methanol, ethanol, acetaldehyde were 11.6, 15.3, and 6.2%, respectively. The experimental data demonstrated that the capability of the perovskite type oxide for the electrode of electrochemical carbon dioxide reduction to produce alcohols was superior to other metal electrode. Key words : Perovskite, Electrode, Alcohol Formation, Electrochemical Reduction, Carbon Dioxide Fixation.

  • PDF