• Title/Summary/Keyword: Carbon pretreatment

Search Result 270, Processing Time 0.029 seconds

Drying Characteristics of Apple Slabs after Pretreatment with Supercritical CO2

  • Lee, Bo-Su;Choi, Yong-Hee;Lee, Won-Young
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.3
    • /
    • pp.261-266
    • /
    • 2011
  • Supercritical $CO_2$ pretreatment before dehydration leads to a faster dehydration rate. The best supercritical $CO_2$ pretreatment conditions for the most effective dehydration were $45^{\circ}C$, 25 MPa and $55^{\circ}C$, 25 MPa. Increasing pressure of the supercritical $CO_2$ pretreatment system tended to accelerate the dehydration rate more than increasing temperature did. Samples pretreated at higher temperatures and pressures showed greater shrinking and pore distribution on scanning electron microscopy. Control samples maintained their cell walls, whereas samples pretreated at higher temperatures and pressures showed more cell disruption, and more pores were observed. Pore sizes of control and pretreated samples were about 100 and $70{\sim}80\;{\mu}m$, respectively. Samples pretreated at higher temperatures and pressures had smaller pores and a denser distribution.

Carbon monoxide releasing molecule-2 protects mice against acute kidney injury through inhibition of ER stress

  • Uddin, Md Jamal;Pak, Eun Seon;Ha, Hunjoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.567-575
    • /
    • 2018
  • Acute kidney injury (AKI), which is defined as a rapid decline of renal function, becomes common and recently recognized to be closely intertwined with chronic kidney diseases. Current treatment for AKI is largely supportive, and endoplasmic reticulum (ER) stress has emerged as a novel mediator of AKI. Since carbon monoxide attenuates ER stress, the objective of the present study aimed to determine the protective effect of carbon monoxide releasing molecule-2 (CORM2) on AKI associated with ER stress. Kidney injury was induced after LPS (15 mg/kg) treatment at 12 to 24 h in C57BL/6J mice. Pretreatment of CORM2 (30 mg/kg) effectively prevented LPS-induced oxidative stress and inflammation during AKI in mice. CORM2 treatment also effectively inhibited LPS-induced ER stress in AKI mice. In order to confirm effect of CO on the pathophysiological role of tubular epithelial cells in AKI, we used mProx24 cells. Pretreatment of CORM2 attenuated LPS-induced ER stress, oxidative stress, and inflammation in mProx24 cells. These data suggest that CO therapy may prevent ER stress-mediated AKI.

Evaluation of Organics and Inorganics Removal of Physicochemical Pretreatment Processes for Reuse of Metal Industry Wastewater (금속산업폐수의 재이용을 위한 물리화학적 전처리공정의 유기물 및 무기물제거 특성 평가)

  • Ha, Dong-Hwan;Jung, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.226-232
    • /
    • 2013
  • Several pretreatment processes such as softening, coagulation and precipitation, activated carbon adsorption, ion-exchange and neutralization processes were studied to remove organics and inorganics for selection of the RO based reusing system of metal industry wastewater. The effects of the hydrophobic/hydrophilic fractions of the organics on DOC removal were tested and used to optimize the combination process. Among various pretreatment processes, softening could reduce 93.4% of hardness and could remove all hydrophobic organics from the effluent of metal industry wastewater. Softening followed by coagulation process could reduce DOC (Dissolved Organic Carbon) from 5.1 mg/L to 1.6 mg/L. In addition, as a result of physiochemical pretreatment to raw wastewater of metal industry, neutralization with NaOH showed an efficient removal of iron and TDS (Total Dissolved Solids) without increase in the hardness.

The Structure and Electrical Characteristics of CNTs Depending on the Hydrogen Plasma Treatment

  • Uh, Hyung-Soo;Lee, Soo-Myun;Jeon, Pil-Goo;Kwak, Byung-Hwak;Park, Sang-Sik;Cho, Euo-Sik;Lee, Jong-Duk;Kwon, Sang-Jik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.855-858
    • /
    • 2003
  • Carbon nanotubes (CNTs) were grown on Ni-coated TiN/Si substrate by microwave plasma chemical vapor deposition using mixture gas of $H_2/CH_4$ at low temperature of 500 $^{\circ}C$. Average diameter of CNTs could be easily controlled by $H_2$ plasma pretreatment time before CNTs growth. The turn-on voltages of CNT emitters were varied from 3.5 $V/{\mu}m$ to 9 $V/{\mu}m$ according to the hydrogen pretreatment conditions. The close relationship between electron emission characteristics and pretreatment time indicates that pretreatment condition can be a key process parameter in CNTs growth for field emission displays..

  • PDF

Effect of Different Pretreatments on Indium-Tin Oxide Electrodes

  • Choi, Moonjeong;Jo, Kyungmin;Yang, Haesik
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.421-425
    • /
    • 2013
  • The effect of pretreatment on indium-tin oxide (ITO) electrodes has been rarely studied, although that on metal and carbon electrodes has been enormously done. The electrochemical and surface properties of ITO electrodes are investigated after 6 different pretreatments. The electrochemical behaviors for oxygen reduction, $Ru(NH_3){_6}^{3+}$ reduction, $Fe(CN){_6}^{3-}$ reduction, and p-hydroquinone oxidation are compared, and the surface roughness, hydrophilicity, and surface chemical composition are also compared. Oxygen reduction, $Fe(CN){_6}^{3-}$ reduction, and p-hydroquinone oxidation are highly affected by the type of the pretreatment, whereas $Ru(NH_3){_6}^{3+}$ reduction is almost independent of it. Interestingly, oxygen reduction is significantly suppressed by the treatment in an HCl solution. The changes in surface roughness and composition are not high after each pretreatment, but the change in contact angle is substantial in some pretreatments.

Evaluation of Pretreatment Effect and Non-enzymatic Glucose Sensing Performance of Carbon Fibers Tow Electrode (탄소섬유 토우의 전처리 효과와 비효소적 포도당 센싱 성능 평가)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.13-18
    • /
    • 2024
  • To develop flexible electrode materials for wearable devices, we investigated the electrochemical characteristics of carbon fibers tow according to pretreatment. And an electrochemical non-enzymatic sensor was fabricated using glucose as a target. The carbon fibers tow was pretreated through desizing and activation processes, and activation was performed in two ways: chemical oxidation and electrochemical oxidation. Surface morphology of carbon fibers tow samples was observed by SEM and their electrochemical characteristics and sensing performance were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. Carbon fibers tow samples showed improved electrochemical properties such as reduced Ret, ΔEp, and increased Ip through pretreatment. And similar electrochemical properties were obtained with both activation methods. We selected electrochemically activated carbon fibers tow as the final electrode material for application of electrochemical sensor. The non-enzymatic glucose sensor based on this electrode has an enhanced sensitivity of 0.744 A/mM (in a linear range of 0.09899~3.75423 mM) and 0.330 mA/mM (3.75423~50 mM), respectively. Through this study, the possibility of using carbon fibers tow was confirmed as an electrode material. It is expected to be used as basic research for development of high-performance flexible electrode materials.

A Study on Applicability of Carbon Ceramic Disc using Pretreated Carbon Fiber (전처리된 탄소섬유를 이용한 카본 세라믹 디스크 적용 가능성에 대한 연구)

  • Yoo, Tae-Doo;Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.39-45
    • /
    • 2022
  • In this study, it was verified that carbon-ceramic brake discs can replace existing cast-iron brake discs of the same size. In addition, a method of pretreating carbon fiber to secure heat dissipation characteristics while using a small amount of carbon fiber was established. The thermal conductivity and bending strength characteristics were analyzed according to the carbon content, and brake braking tests were conducted. Through pretreatment, the maximum temperature was lowered by 16 ℃ compared to the case using only carbon fiber, and the cooling rate was improved by approximately 10% compared to metal brake discs. However, the total heat capacity increased as the mass increased owing to the reaction. Thus, the measured temperature was higher than that of the metal brake disc; therefore, additional research is required.

Removal characteristics of organic matter during pretreatment for membrane-based food processing wastewater reclamation

  • Jang, Haenam;Lee, Wontae
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.205-210
    • /
    • 2018
  • In this study, we investigated coagulants such as polyaluminum chloride (PACl) and ferric chloride ($FeCl_3$) and the combination of a coagulant and powdered activated carbon (PAC) for the removal of dissolved organic matter (DOM) from fish processing effluent to reduce membrane fouling in microfiltration. The efficiency of each pretreatment was investigated through analyses of dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm ($UVA_{254}$). Membrane flux and silt density index (SDI) analyses were performed to evaluate membrane fouling; molecular weight distributions (MWD) and fluorescence excitation-emission matrix (FEEM) spectroscopy were analyzed to assess DOM characteristics. The results demonstrated that $FeCl_3$ exhibited higher DOC and $UVA_{254}$ removals than PACl for food processing effluent and a combination of $FeCl_3$ and PAC provided comparatively better results than simple $FeCl_3$ coagulation for the removal of DOM from fish processing effluent. This study suggests that membrane fouling could be minimized by proper pretreatment of food processing effluent using a combination of coagulation ($FeCl_3$) and adsorption (PAC). Analyses of MWD and FEEM revealed that the combination of $FeCl_3$ and PAC was more efficient at removing hydrophobic and small-sized DOM.

A Modified Method for the Determination of the Carboxyl Groups in Fibers by Headspace Gas Chromatography

  • Hou, Qingxi;Chai, Xin-Sheng;Zhu, Junyong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.265-270
    • /
    • 2006
  • This paper reports an improved headspace gas chromatographic method for the determination of carboxyl group content in wood fibers. Pretreatment of wood fibers was applied using dilute HCl to convert carboxyl groups to carboxylic acid groups and then using deionized water to wash fiber samples thoroughly. The samples were finally air dried. Sodium bicarbonate solution was used to react with carboxylic acid groups of the pretreated fibers in a closed testing vial to release carbon dioxide. The content of carboxyl groups in fibers was accurately quantified by determining the amount of carbon dioxide released by a headspace gas chromatograph equipped with a thermal conductivity detector. The modified process for fiber sample pretreatment increased the reliability and accuracy in measuring carboxylic acid groups. The present method is simple, accurate.

  • PDF

Removal of boron in seawater by activated carbon adsoprtion (활성탄 흡착에 의한 해수중의 보론 제거)

  • Kim, Han-Seung;Kang, Joon-Seok;Kim, Byung-Ro
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.917-922
    • /
    • 2011
  • Adsorption characteristics of boron on activated carbon was investigated in order to evaluate the use of activated carbon for the removal of boron in desalination processes using SWRO. Boron was removed ranging from 54~60% when the concentration of activated carbon was 1,000 mg/L in 6 hours under the initial boron concentration of 5 mg/L. The removal of boron increased by 20~22% with the increase of pH from 5 to 9. Organic matter had adverse effect on the adsorption of boron on activated carbon. Boron removal decreased by 10-12% when EDTA was added at 1 mg/L under 5 mg/L of boron and 200mg/L of activated carbon. In this results, activated carbon would be a good candidate for a pretreatment of desalination processes by SWRO from the view of mitigating the feed boron concentration to RO and meeting the effluent boron concentration without post-treatment after RO.