• Title/Summary/Keyword: Carbon pools

Search Result 24, Processing Time 0.019 seconds

Analyses and trends of forest biomass in higher Northern Latitudes

  • Tsolmon, R.;Tateishi, R.;Sambuu, B.;Tsogtbayar, Sh.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.965-967
    • /
    • 2003
  • Information on forest volume, forest coverage and biomass are important for developing global perspectives about CO$_{2}$ concentration changes. Forest biomass cannot be directly measured from space yet, but remotely sensed greenness can be used to estimate biomass on decadal and longer time scales in regions of distinct seasonality, as in the north. Hence, in this research, numerical methods were used to estimate forest biomass in higher northern regions. A regression model linking Normalized Difference Vegetation Index(NDVI), to forest biomass extracted from SPOT/4 VEGETATION data and PAL 8km data in regional and continental area (N40-N70) respectively. Statistical tests indicated that the regression model can be used to represent the changes of forest biomass carbon pools and sinks at high latitude regions over years 1982-2000. This study suggests that the implementation of estimation of biomass based on 8-km resolution NOAA/AVHRR PAL and SPOT-4/VEGETATION data could be detected over a range of land cover change processes of interest for global biomass change studies.

  • PDF

Crossover Temperature and Ignition Delay Time of Diluted Hydrogen-Air Mixtures (희석된 수소-공기 혼합기의 크로스오버 온도와 점화지연시간)

  • Dong Youl, Lee;Eui Ju, Lee
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.18-24
    • /
    • 2022
  • Hydrogen is a clean fuel and is used in many applications in power systems such as fuel cells. It has unique properties such as wide flammability, high burning velocity, and difficulty to liquefy, which lead to critical safety issues. Fire and explosion are the most frequently occurring accidents and one of the major reasons is autoignition. In the ignition process, the chemistry of hydrogen combustion depends mainly on radical pools, and the temperature at which chain-branching and terminating rates are equal is called the crossover temperature. This study addresses the homogeneous autoignition of diluted hydrogen-air mixtures to investigate the effects of dilution on the crossover temperature to prevent explosions in the future. The new criterion for crossover temperature is introduced by only hydrogen radicals to adjust more simply. The detailed calculations indicate that the crossover temperatures are low at high dilutions of carbon dioxide and nitrogen because the concentrations of active radicals are reduced when an inert gas is added. This result is expected to contribute to hydrogen safety and realize a hydrogen society in the future.

Application of CBM-CFS3 Model to Assess Carbon Stock and Age Class Changes Over Long Term Forest Planning in a Korea's National Forest (산림탄소축적을 고려한 국유림 장기경영계획 수립을 위한 CBM-CFS3 모델의 적용)

  • Jang, Kwangmin;Won, Hyun-Kyu;Kim, Young-Hwan;Tak, Kwang-IL;Shin, Man Yong;Lee, Kyeonghak
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.591-597
    • /
    • 2011
  • Forest carbon stock changes in a national forest were assessed by CBM-CFS3 model with different management scenarios to support decision making for a long term forest planning. Management scenarios were composed with 4 different levels of timber harvesting - current harvesting level (scenario1), 30% increment in each period (scenario2), 3 times increment (scenario3), and 5 times increment (scenario4). For each scenarios, changes in total carbon stocks, carbon stocks of each carbon pools, carbon stocks of harvested wood products (HWP) and age class structure were estimated over 100-year planning horizon. The estimated total carbon stock including HWP at the end of final period (100 years) was 433.1 tC/ha under scenario 1, but the age class structure has skewed right to the upper classes, which is not desirable for sustainable forest management. Under the scenario 4, however, the total carbon stock decrease to 385.5 tC/ha and the area of old growth forest show a significant decline. The estimated total carbon stock under scenario 2 and 3 were 411.7 tC/ha and 410.5 tC/ha respectively, and it was able to maintain the initial level of the forest carbon stocks during the planning horizon. Also the age class structures under the scenario 2 and 3 were evenly distributed from class 1 to class 8. Overall, scenario 2 and 3 were the most acceptable forest management options, in terms of carbon stock changes and age class structure.

Distribution of Phytoavailable Heavy Metals in the Korean Agricultural Soils Affected by the Abandoned Mining Sites and Soil Properties Influencing on the Phytoavailable Metal Pools

  • Lim, Ga-Hee;Kim, Kye-Hoon;Seo, Byoung-Hwan;Kim, Kwon-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.191-198
    • /
    • 2014
  • Absorption and accumulation of heavy metals in plants were determined by phytoavailable contents rather than total contents of heavy metals. Therefore, phytoavailability-based management protocol should be prepared for safe food crop production in contaminated agricultural lands. This study was conducted to understand the distribution and phytoavailability of heavy metal in the Korean agricultural soils affected by abandoned mining sites along with investigation of soil properties (soil pH, OM, DOC, clay content, Al/Fe/Mn content) influencing on the metal phytoavailability. For this, 142 agricultural soils located nearby 39 abandoned mining sites distributed in five province in Korea, were analyzed. Among the four different heavy metals, cadmium (Cd) and zinc (Zn) appeared to exist in more phytoavailable form than cupper (Cu) and lead (Pb). Soil pH was the main factor governing phytoavailable Cd, Pb, and Zn showing positive relationship with partitioning coefficients of the corresponding metals; Cd (r = 0.66, P < 0.001), Pb (r = 0.70, P < 0.001), and Zn (r = 0.62, P < 0.001). This implied higher phytoavailability of the corresponding metals with higher soil pH. In contrast, phytoavailability of Cu (r = 0.41, p < 0.01) was only negatively related with soil DOC (dissolved organic carbon).