• Title/Summary/Keyword: Carbon partitioning

Search Result 63, Processing Time 0.033 seconds

Partitioning of Carbon and Nitrogen Reserves During Winter Adaptation and Spring Regrowth II. Effect of seeding density on the content of organic reserves on the wintering period and forage yeild in rape ( Brassica napus L. ) (저장탄수화물과 질소의 월동성과 재생활력에 대한 이용성 II. 추파 유채 ( Brassica napus L. ) 의 파종밀도가 월동중 저장유기물 함량 및 수량에 미치는 영향)

  • 김태환;김기원;정우진;전해열;김병호
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.4
    • /
    • pp.231-237
    • /
    • 1995
  • The objective of this study is to obtain the basic data for investigating the effects of organic reserves on winter survival or regrowth yield. Forage rape (Brassica napus L.) was sown by three seeding densities of 5, 15 and 25cm interval among plants on Sep. 1, 1994. Field-grown plants were sampled on the before wintering (Dec. 4) and on the wintering period (Jan. 16) to analyze the nitrogen and non-structural cahohydrate reserves. The rate of winter survival and regrowth yield were also measured in the spring of next year. The dry matter yields from the plots of 5, 15 and 25cm seeding interval were 1,270, 1.01 9 and 1,062 kg/lOa respectively, on the before wintering. The similar pattern wa5 observed in the crude protein yields affected by seeding density. On the before wintering, both of nitrogen and starch contents per plant significantly increased as the seeding density was lowered. Starch content was relatively higher than that of nitrogen in all plots. On the wintering period, the contents of nitrogen reserves were 6.5, 41.2 and 121.7 mglplant, those of starch reserves were 1.0, 5.4 and 185.1 mg/plant, respectively, in the plots of 5, 15 and 25cm seeding interval. Nitrogen reserves on the wintering period increased while starch reserves highly decreased in all plots comparing to the before wintering. 'lhe rates of winter survival were 10.2, 20.6 and 37.1%, and regrowth yields were 76, 96 and 178 kgD.M/ IOa, respectively, in the plots of 5, 15 and 25cm seeding interval. These results cleariy showed that seeding density have a close influence on the level of nitrogen and non-structurd cahohydrate reserves, and that the rate of winter survival and regrowth yield were controlled by reserves level on the wintering period.

  • PDF

( Partitioning of Carbon and Nitrogen Reserves During Winter Adaptation and Spring Regrowth III. Effect of cutting date on the content of organic reserves on the wintering period and forage yeild in rape( Brassica napus L. ) (저장탄수화물과 질소의 월동성과 재생활력에 대한 이용성 III. 추파 유채 ( Brassica napus L. ) 의 예취기시가 월동중 저장유기물 함량 및 수량에 미치는 영향)

  • 김태환;김기원;정우진;전해열;김병호
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.4
    • /
    • pp.238-244
    • /
    • 1995
  • The objective of this study is to obtain the basic data for investigating the effects of organic reserves on winter survial or regrowth yield. Forage rape(Brassica napus L.) was sown on Sep. 1, 1994. Experimental plots were divided into three replicates under 6 different cutting dates(l0 days interval from Oct. 15 to Dec. 4). Field-grown palnts were sampled on the each cutting date and on the wintering period (Jan. 16) to analyze the nitrogen and non-structural cahohydrate reserves. The rate of winter survival and regrowth yield were also measured in the spring of next year. On the before wintering, dry matter yields were 152, 274, 500, 718, 776 and 981 kg/lOa, respectively, from the cutting date on Oct. 15, Oct. 25, Nov. 4, Nov. 14, Nov. 24, and Dec. 4. Cmde protein yield significantly increased as cutting date was later until Nov. 14, thereafter a significant increase did not occured. Nitrogen and starch contents per plant significnatly increased as the cutting date was later. The increasing rate of starch was greatly higher than that of nitrogen. On the wintering period, nitrogen reserves in mts were 85.3, 68.8, 47.6, 28.3, 44.3, and 55.3 mglplant, and starch reserve were 11 1.3, 75.3, 39.3, 19.6, 26.4 and 34.6 mglplant, respectively, in the plots cut on Oct. 15, Oct. 25, Nov. 4, Nov. 14, Nov. 24, and Dec. 4. It showed that carbohydrate reserves were much highly utilized than nitrogen reserves during wintering period. The rates of winter survival were 91, 83, 46, 22, 35 and 43% and regrowth yields were 692, 545, 316, 84, 127 and 140 kgD.M/lOa, respectively, in each plots. The highly significant correlation (p<0.01) between the level of organic reserves and the rate of winter survival or regrowth yield were obtained.

  • PDF

( Partitioning of Carbon and Nitrogen Reserves During Winter Adaptation and Spring Regrowth IV. Effect of seeding date on the content of organic reserves on the wintering period and forage yeild in rape ( Brassica napus L. ) (저장탄수화물과 질소의 월동성과 재생활력에 대한 이용성 IV. 추파 유채 ( Brassica napus L. ) 의 파종시기가 월동중 저장유기물 함량 및 수량에 미치는 영향)

  • 김태환;김기원;정우진;전해열;김병호
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • The objective of this study is to obtain the basic data for investigating the effects of organic reserves on winter survial or regrowth yield. Forage rape (Brussicu napus L.) was sown at 10 day> interval from Sep. I to Nov. 1. Field-grown palnts were sampled on the before wintering (Dec. 4) and on the wintering period (Jan. 16) to analyze the nitrogen and non-structural cahohydrate reserves. The rate of winter survival and regrowth yield were also measured in the spring of next year. On the before wintering, the dry matter yields from the plots sown on Sep. 1, Sep.11 and Sep. 21 were 860, 596 and 260 kg/lOa, respectively. No. harvest was canied out on the plots sown after Oct. 1 because the growth state was not enough to cut. Both of nitrogen and starch contents per plant significantly increased as the seeding date was later. On the wintering period, the contents of nitrogen reserves in roots were 176.8. 120.1, 71.7, 84.0, 72.1, 45.3 and 33.3 mg/plant, those of starch reserves were 199.0. 55.8, 21.8, 92.6, 86.5, 36.4 and 29.0 mglplant, resepctively, in the plots sown on Sep. 1, Sep. 11, Sep. 21, Oct. I, Oct. 11, Oct. 21 and Nov. 1. The rates of winter survival were 40, 36, 33, 85, 87, 59 and 49% and regrowth yields were 161, 86, 65, 520, 451, 121 and 33 kgD.M/lOa, respectively, in each plots. 'Ihese results clearly showed that seeding date has a close influence on the level of organic reserves and forage yield, and that the possibility of continuous utilization on the before and alter wintering is extremely limited by seeding date.

  • PDF

The ABA Effect on the Accumulation of an Invertase Inhibitor Transcript that Is Driven by the CAMV35S Promoter in ARABIDOPSIS

  • Koh, Eun-Ji;Lee, Sung June;Hong, Suk-Whan;Lee, Hoi Seon;Lee, Hojoung
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.236-242
    • /
    • 2008
  • Invertase (${\beta}$-D-fructofuranosidase; EC 3.2.1.26) catalyzes the conversion of sucrose into glucose and fructose and is involved in an array of important processes, including phloem unloading, carbon partitioning, the response to pathogens, and the control of cell differentiation and development. Its importance may have caused the invertases to evolve into a multigene family whose members are regulated by a variety of different mechanisms, such as pH, sucrose levels, and inhibitor proteins. Although putative invertase inhibitors in the Arabidopsis genome are easy to locate, few studies have been conducted to elucidate their individual functions in vivo in plant growth and development because of their high redundancy. In this study we assessed the functional role of the putative invertase inhibitors in Arabidopsis by generating transgenic plants harboring a putative invertase inhibitor gene under the control of the CaMV35S promoter. A transgenic plant that expressed high levels of the putative invertase inhibitor transcript when grown under normal conditions was chosen for the current study. To our surprise, the stability of the invertase inhibitor transcripts was shown to be down-regulated by the phytohormone ABA (abscisic acid). It is well established that ABA enhances invertase activity in vivo but the underlying mechanisms are still poorly understood. Our results thus suggest that one way ABA regulates invertase activity is by down-regulating its inhibitor.

Partitioning of Carbon and Nitrogen Reserves During Winter Adaptation and Spring Regrowth I. Effects of temperature on growth, total content of nitrogen and non-structureal carbohydrate in forage rape(Brassica napus L.) (저장탄수화물과 질소의 월동성과 재생활력에 대한 이용성 I. 저온처리가 유채 ( Brassica napus L. ) 의 생육 , 질소 및 비구조성 탄수화물의 총 함량에 미치는 영향)

  • 김병호;김태환;김기원;정우진;전해열
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.3
    • /
    • pp.157-163
    • /
    • 1995
  • The objective of this study is to obtain the basic data for investigating the effects of organic reserves on winter survial or regrowth yield. Dry matter, nitrogen and non-structural carbohydrate content of plants grown under $5^{\circ}C$ or $20^{\circ}C$ of culture temperature during 25 days were investigated. The dry matter content of leaves and roots were significantly reduced under $5^{\circ}C$ compared with $20^{\circ}C$culture condition. Comparing with the dry matter per plant under $20^{\circ}C$, those in leaves and roots under $5^{\circ}C$ decreased to 25% and 10%, respectively, after 25 days of temperature treatment. Total nitrogen content in leaves under $20^{\circ}C$ and $5^{\circ}C$ increased to 68% and 39% compared to the initial lenel(day O), respectively, during 25 days after temperature treatment, Nitrogen content in roots highly increased under 5 C while there was a little change under $20^{\circ}C$ condition. The nitrogen contents in roots under $5^{\circ}C$ and $20^{\circ}C$ were 39.0 and 30.8mgJg DM, respectively, after 25 days of temperature treatment. Total contents of soluble carbohydrate in both leaves and roots under $5^{\circ}C$ were higher than those under $20^{\circ}C$ condition. After 25 days of temperature treatment under$5^{\circ}C$ , their contents in leaves and roots were 1.4 and 2.0 times higher than those of under $20^{\circ}C$ condition. Stach atent in roots under $20^{\circ}C$ was less changed, while thatof under $5^{\circ}C$ greatly increased from 64.8 to 178.7mglg DM duling 25 days. 'Ihese results clearly showed that an accumulation of both nitrogen and non-structural carbohydrate in the plants occured under low temperature condition.e condition.

  • PDF

Morphological and Photosynthetic Responses of Rice to Low Radiation (일사 저하에 대한 벼의 형태적 특성 및 광합성 반응 변화)

  • Yang, Woon-Ho;Peng, Shaobing;Dionisio-Sese Maribel L.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • Light is an environmental component inevitably regulating photosynthesis and photo-morphogenesis, which are involved in the plant growth and development. Studies were conducted at the International Rice Research Institute, Philippines in 2004 and 2005, with aims to investigate 1) morphological responses of rice plants to low radiation, 2) morphological alteration of shade-grown plants when exposed to high light intensity, and 3) photosynthetic responses of shade-grown rice plants. Reduction in solar radiation by 40% induced increases in the area on a single leaf basis, biomass partitioning to leaves, and chlorophyll meter readings but brought about retardation of tiller development and decrease in above-ground biomass production of rice varieties. When the shade-grown plants from two weeks of transplanting to panicle initiation were exposed to full solar radiation after panicle initiation, they demonstrated less increase in chlorophyll meter readings and more decrease in leaf nitrogen concentrations from panicle initiation to flowering than control plants that were grown under the ambient solar radiation for whole growth period after transplanting. Shade-grown rice plants exhibited lower carbon assimilation rates but higher internal $CO_2$ concentrations on a single leaf basis than control plants, when measurements for shade-grown rice plants were made under the shading treatments. But when the measurements for shade-grown plants were made under the full solar radiation, light-saturated carbon assimilation rates were similar to control plants. Response of photosynthetic rates to varying light intensities was not considerably different between shading treatments and control. Yield reduction was observed in the shading treatments from panicle initiation to flowering and from flowering to physiological maturity, mainly by less spikelets per panicle and poor grain filling, respectively.

Heavy Metals in Surface Sediments from Doam Bay, Southwestern Coast of Korea (한국 남서해안 도암만 표층퇴적물의 중금속 함량 및 분포 특성)

  • CHO, HYEONG-CHAN;CHO, YEONG-GIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.4
    • /
    • pp.159-168
    • /
    • 2015
  • Forty-four surface sediments from Doam Bay were analyzed for total organic carbon (TOC), total nitrogen (TN), total metal (Al, Fe, Mn, Cr, Cu, Ni, Pb, Zn) and further chemical partitioning of metals were carried out in some samples. The TOC (0.32~3.10%) and TN (0.03~0.26%) values of the samples were similar to those of other coastal area. The C/N ratios ranged from 7.9 to 11.9 with an average 9.3 which revealed that contribution of terrestrial organic matters was relatively rare. Contents of analysed metals showed a level lower than threshold effects level (TEL) in sediment quality guidelines. Based on the chemical speciation of metals, the lattice fractions were found in the order Cr > Cu > Ni > Zn > Pb > Mn, while Mn and Pb are the ratio of the non-lattice fractions accounted for more than 50%. The average baseline values were obtained relative cumulative frequency curves and linear regression analysis. The respective baseline concentrations for Cu, Ni, Pb, Zn, Cr and Mn were 11.8, 23.1, 26.8, 76.6, 56.7, 585 mg/kg, respectively. Based on geoaccumulation index ($I_{geo}$) with a baseline values of Mn showed that face the contamination phase from estuarine stations. However, in case of Zn and Pb, although there is no sign of contamination, it could be release from sediment when there is a change in the environment, which is caused from the high ratio of non-lattice fractions.

A Review on Soil Respiration Measurement and Its Application in Korea (토양호흡의 측정과 국내 연구 현황에 대한 고찰)

  • Lee, Eun-Hye;Lim, Jong-Hwan;Lee, Jae-Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.264-276
    • /
    • 2010
  • The objectives of this study were to introduce the methods of soil respiration measurement, to review soil respiration studies conducted in Korea, and to suggest potential issues generated from using various methods for soil respiration measurement. According to the measurement principles, the methods of soil respiration measurements are classified as: alkali absorption method (AA), closed chamber method (CC), closed dynamic chamber method (CDC), and open flow method (OF). Based on the litereaure review on soil respiration studies in Korea, the CDC method was mostly used by the researchers (62%), followed by the AA (17%), OF (13%) and CC (8%) methods. Along with these methods, various instruments were used such as LI-6400-09, EGM-3, EGM-4, and automatic soil respiration chamber. Most of the soil respiration measurements were carried out in forest ecosystems and the reported soil respiration showed a wide range of variations from 130 to 900 mg $CO_2\;m^{-2}h^{-1}$. Continuous monitoring of soil respiration with minimal disturbance and the potential inconsistency in measurements are still the challenges facing the researchers, causing a paucity in quality datasets of sufficient quantity. Few attempts of intercomparison among different methods hinder the data users from synthetic analysis and assessment of the collected datasets. In order to better estimate soil carbon budget and understand their exchange mechanisms in key ecosystems of Korea, it is necessary to measure soil respiration at various plant functional types, soils, and climate conditions over a decadal time scale along with the study on the partitioning of soil respiration into autotrophic and heteorotrophic components.

Evaluation of Deformation Characteristics and Vulnerable Parts according to Loading on Compound Behavior Connector (복합거동연결체의 하중재하에 따른 변형 특성 및 취약부위 산정)

  • Kim, Ki-Sung;Kim, Dong-wook;Ahn, Jun-hyuk
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.524-530
    • /
    • 2019
  • Purpose: In this paper, we construct a detailed three-dimensional interface element using a three-dimensional analysis program, and evaluate the composite behavior stability of the connector by applying physical properties such as the characteristics of general members and those of reinforced members Method: The analytical model uses solid elements, including non-linear material behavior, to complete the modeling of beam structures, circular flanges, bolting systems, etc. to the same dimensions as the design drawing, with each member assembled into one composite behavior linkage. In order to more effectively control the uniformity and mesh generation of other element type contact surfaces, the partitioning was performed. Modeled with 50 carbon steel materials. Results: It shows the displacement, deformation, and stress state of each load stage by the contact adjoining part, load loading part, fixed end part, and vulnerable anticipated part by member, and after displacement, deformation, The effect of the stress distribution was verified and the validity of the design was verified. Conclusion: Therefore, if the design support of the micro pile is determined based on this result, it is possible to identify the Vulnerable Parts of the composite behavior connector and the degree of reinforcement.

Understory Evapotranspiration Measured by Eddy-Covariance in Gwangneung Deciduous and Coniferous Forests (광릉 활엽수림과 침엽수림에서 에디공분산으로 관측한 하부 군락의 증발산)

  • Kang, Min-Seok;Kwon, Hyo-Jung;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.233-246
    • /
    • 2009
  • The partitioning of evapotranspiration (ET) into evaporation (E) and transpiration (T) is critical in understanding the water cycle and the couplings between the cycles of energy, water, and carbon. In forests, the total ET measured above the canopy consists of T from both overstory and understory vegetation, and E from soil and the intercepted precipitation. To quantify their relative contributions, we have measured ET from the floors of deciduous and coniferous forests in Gwangneung using eddy covariance technique from 1 June 2008 to 31 May 2009. Due to smaller eddies that contribute to turbulent transfer near the ground, we performed a spectrum analysis and found that the errors associated with sensor separation were <10%. The annual sum of the understory ET was 59 mm (16% of total ET) in the deciduous forest and 43 mm (~7%) in the coniferous forest. Overall, the understory ET was not negligible except during the summer season when the plant area index was near its maximum. In both forest canopies, the decoupling factor ($\Omega$) was about ~0.15, indicating that the understory ET was controlled mainly by vapor pressure deficit and soil moisture content. The differences in the understory ET between the two forest canopies were due to different environmental conditions within the canopies, particularly the contrasting air humidity and soil water content. The non-negligible understory ET in the Gwangneung forests suggests that the dual source or multi-level models are required for the interpretation and modeling of surface exchange of mass and energy in these forests.