• Title/Summary/Keyword: Carbon particulate

Search Result 429, Processing Time 0.025 seconds

The Distribution and Interannual Variation in Suspended Solid and Particulate Organic Carbon in the Northern East China Sea (동중국해 북부해역에서 부유물질과 입자성유기탄소의 분포 특성 및 연간 변화)

  • Kim, Dong-Seon;Choi, Sang-Hwa;Kim, Kyung-Hee;Kim, Cheol-Ho
    • Ocean and Polar Research
    • /
    • v.31 no.2
    • /
    • pp.219-229
    • /
    • 2009
  • In order to establish annual variations in the marine ecosystem of the East China Sea, suspended solids (SSs) and particulate organic carbon (POC) were extensively investigated in the northern part of the East China Sea from August 2003 to April 2008. Surface SS concentrations showed large spatial variations in spring and fall, but not in summer. Surface SS concentrations in spring were lower than those in summer and fall. In summer, SSs discharged from Changjiang were mostly deposited in the coastal areas and did not reach our study area which was located about 260 km from the river mouth. High SS concentrations were observed near the bottom, which resulted from resuspension of bottom sediments by the bottom currents. Surface POC concentrations did not exhibited large seasonal variations. Phytoplankton biomass was a main factor controlling surface POC concentrations. POC/chlorophyll ratios showed large seasonal variations, with maximum numbers in summer. POC/PON ratios were higher in summer than the Redefied ratio (6.6), while they were lower in spring and fall. In summer, higher POC/chlorophyll and POC/PON ratios were probably attributed to the high phytoplankton mortality caused by nutrient depletion in surface waters.

Spatio-Temporal Distribution of Particulate Organic Carbon (POC) and Nitrogen (PON) in the Southwestern Area of East Sea (동해 남서해역에서 입자성 유기탄소와 질소의 시·공간적 분포 특성)

  • Oh, Seok Jin;Jeong, Semi;Kim, Seok-Yun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.144-150
    • /
    • 2016
  • In southwestern East Sea, we investigated the spatio-temporal distribution characteristics of particulate organic carbon (POC) and nitrogen (PON) in September 2011 (summer), January (winter) and May 2012 (spring). Although cold waters known as the origin upwelling in the surface layer of September were not observed, this periods showed high primary productivity because of high concentrations of chlorophyll, low percentage of non-autotrophic particulate fraction among POC calculated by POC/Chl-a ratio (27%) and low POC/PON ratio (6.2), which means active amino acid and protein synthesis, However, May, 2012 showed low primary productivity because of high percentage of non-autotrophic particulate fractions among POC (66%) and high POC/PON ratio (8.1), Although spring bloom and high primary productivity has been reported in the East Sea, high percentage of non-autotrophic particulate fractions in POC, observed in the East sea during the post 2012 spring, is suggested to be due to the increase of phaeo-pigment during post spring bloom. Thus, composition of particulate organic matter may have sensitively changed by marine environmental factors in spite of same season.

Spatial and Temporal Variations of Satellite-derived 10-year Surface Particulate Organic Carbon (POC) in the East China Sea (동중국해에서 위성에서 추정된 10년 동안의 표층 입자성 유기 탄소의 시/공간적 변화)

  • Son, Young-Baek;Lee, Tae-Hee;Choi, Dong-Lim;Jang, Sung-Tae;Kim, Cheol-Ho;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Kim, Moon-Koo;Jung, Seom-Kyu;Ishizaka, Joji
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.4
    • /
    • pp.421-437
    • /
    • 2010
  • Surface particulate organic carbon (POC) concentration estimated from Maximum Normalized Difference Carbon Index (MNDCI) algorithm using SeaWiFS data is used to determine spatial and temporal variations of the Changjiang Diluted Water (CDW) in the East China Sea. 10-year monthly POC concentrations (1997-2007) show clearly seasonal variations. Inter-annual variation of POC in whole and three different areas separated by standard deviation is not linearly correlated with the Changjiang River discharge that has decreased after 1998. To determine more detailed spatial and temporal POC variations, we used empirical orthogonal function (EOF) analysis in summer (Jun.-Sep.) from 2000 to 2007. First mode is spatially and temporally correlated with the area influenced by the Changjiang River discharge. Second mode is temporally less sensitive with the Changjiang River discharge but spatially correlated with north-south patterns. Relatively higher POC variations during 2000 and 2003 were shown in the southern East China Sea. These patterns during 2004 and 2007 moved to the northern East China Sea. This phenomenon is better related to spatial variations of wind-direction than the amount of Changjiang River discharge, which is verified from in-situ measurement.

Distribution of Dissolved and Particulate Organic Carbon in the East China Sea in Summer (하계 동중국해에서의 용존 및 입자유기탄소의 분포 특성)

  • Kim, Soo-Kang;Choi, Young-Chan;Kim, Jin-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.124-131
    • /
    • 2008
  • This study was conducted around the southwest sea areas of Jeju and coastal sea areas of China in August 2003 and September 2004 to research distribution patterns of dissolved inorganic nutrients, dissolved and particulate organic carbon. Distribution patterns of nutrients in the East China Sea in summer were shown to be influenced by water masses and phytoplankton. Water masses in the East China Sea in summer, except for coastal sea areas of china, showed less vertical mixing process, causing decline in the inflow of nutrients to surface water. Bottom water, however, showed high concentration, since nutrients made by dissolved organic matters from surface water were accumulated at the bottom. Sea areas with high concentration of chlorophyll a showed low concentration of nutrients and vice versa, indicating biological activities control dissolved inorganic nutrients. The distribution of dissolved organic carbon didn't show any correlation with salinity, temperatures, and water masses. Areas around the river mouth of the Changjiang showed high concentration of dissolved organic carbon more than $100{\mu}M$, but relatively low concentration in the southwest sea areas of Jeju, indicating that the river mouth of the Changjiang coastal water has a great influence on dissolved organic carbon in the East China Sea. Distribution patterns of particulate organic carbon in the research areas showed the highest concentration of average $9.23{\mu}M$ in coastal areas of China influenced by the river mouth of the Changjiang coastal water. By comparison, the concentration was relatively low at $3.04{\mu}M$ in the southeast sea areas of Jeju on which the Taiwan warm current has influence, and was $7.23{\mu}M$ in the central sea areas of Jeju. Thus, there is much indication that the river mouth of the Changjiang coastal water serves as a supplier of particulate organic carbon along with autogenous source. In general, if particulate organic carbon has a high correlation with the concentration of Chlorophyll a, it is thought that it is originated from autogenous source. However, the southeast sea areas of Jeju shows low salinity below 30, therefore it is proper to think that its origin is terrestrial source rather than that of autogenesis.

  • PDF

Distribution of Particulate Organic Matter in the Gampo Upwelling Area of the Southwestern East Sea

  • Yang, Han-Soeb;Oh, Seok-Jin;Lee, Haeng-Pil;Moon, Chang-Ho;Han, Myung-Soo;Kim, Bok-Kee
    • Journal of the korean society of oceanography
    • /
    • v.33 no.4
    • /
    • pp.157-167
    • /
    • 1998
  • The distribution of particulate organic carbon and nitrogen (POC and PON) and chlorophyll a of particulate organic matter was investigated in the southwestern East Sea in August and October 1995. The upwelled 'cold water mass' with temperature less than 14$^{\circ}$C occurred near the Campo coast in August. At most of the onshore stations, concentrations of POC and PON were high in surface water, rapidly decreased with depth down to 30 m and then remained constant. Differences in their concentrations between surface and bottom waters were larger in August than in October. At the offshore stations, POC and PON were higher in surface than in deep waters though the differences in concentration were small. The highest, vertically integrated inventories of POC, PON and phytoplanktonic carbon in the upper mixed waters of the onshore stations occurred in August. The mixed layers at onshore stations showed relatively high percentages of POC, PON and chlorophyll a in total suspended matter, low ratios of POC to chlorophyll a and high inventories of phytoplanktonic carbon, compared with the values at offshore stations. These phenomena were more obvious in August, when cold water mass developed strongly, than in October. These results indicate that primary production plays a significant role for the budget of particulate organic matter in the upwelled cold water mass of the southwestern East Sea.

  • PDF

The Distribution Characteristics and Long-term Trend of Carbonaceous Species in Airborne Particulate in Seoul between 1986 and 1996

  • Hwang, Kyung-Chul;Ma, Chang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E1
    • /
    • pp.11-20
    • /
    • 2003
  • To characterize airborne particulate carbon and its temporal variation in the heavily industrialized metropolitan city, Seoul in South Korea, aerosol sampling was performed from 1986 to 1996. Correlation coefficients of elemental carbon (EC) and organic carbon (OC) with mass concentration of fine particles ($\underline{\leq}$2.1 ${\mu}m$) are 0.73 and 0.51, respectively. EC concentrations of the fine particle mode are 10.1, 5.9, 4.5, and 7.4 ${\mu}g\;m^{-3}$ in winter, spring, summer, and autumn, respectively. On the other hand, OC concentration shows maximum value in winter and followed by autumn, summer, and spring. A seasonal peak in the ratio of OC to EC in fine particles was observed during the summer photochemical season from June to August. Concentrations of EC and OC in Asian dust storm events are generally higher than in non- Asian dust storm events except in 1990. The difference of EC concentrations between Asian dust storm periods and non-Asian dust storm periods are much larger than those of OC concentrations. There are slight increases of EC concentration between 1987 and 1990 and a gradual decrease between 1990 and 1996.

Organic Matters Budget and Movement Characteristic in Lake Hoengseong (횡성호의 유기물 수지 및 거동 특성)

  • Joung, Seung-Hyun;Park, Hae-Kyung;Yun, Seok-Hwan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.238-246
    • /
    • 2012
  • Organic matters budget in Lake Hoengseong were monthly investigated from April 2009 to November 2009. The intense rainfall occurred at between July and August and the hydrological factors were highly varied during the rainfall season. By the concentrated rainfall, the elevation, influx and efflux were sharply increased and the turbid water was also flowed into the middle water column in Lake. The inflow of turbid water increased the nutrient concentrations in water body and this appears to stimulate of phytoplankton regard as the primary productivity of influx of organic matter. Monthly average concentration of dissolved organic carbon (DOC) was generally higher than the particulate organic carbon (POC) concentration in Lake, but Temporal and spatial variation of POC concentration was higher than DOC and the maximum POC concentration was recorded in surface water in August, had the highest phytoplankton biomass. Organic carbon concentration in inflow site was rarely changed during the dry season, but the concentration was rapidly increased by the initial intense rainfall. In organic matters budget, the most of the organic matters was inflowed from the inflow site at rainfall season. Especially, the influx of allochthonous organic matters during the intense rainfall was 72.4% in the total influx organic matters.

Catalytic oxidation kinetics of iron-containing carbon particles generated from diesel-sprayed hydrogen-air diffusion flame (디젤-분무 수소-공기 확산화염에서 생성된 철-함유 탄소입자의 촉매 산화반응 특성)

  • Kim, Yongho;Kim, Yong-Tae;Kim, Soo Hyung;Lee, Donggeun
    • Particle and aerosol research
    • /
    • v.4 no.2
    • /
    • pp.51-67
    • /
    • 2008
  • In this study, we devoted to kinetic measurement of the catalytic oxidation of iron-containing flame soot particles and better understanding the role of catalytic particles on carbon oxidation in particular at low temperature, targeting on autothermal regeneration of diesel particulate filter by diesel exhaust gas. Carbon-based Fe-containing particles generated by spraying ferrocene-doped diesel fuel in an oxy-hydrogen flame are tested and compared with a commercial carbon black powder for thermogravimetric analysis (TGA), secondary ion mass spectrometry (SIMS), Fourier-transform infrared spectroscopy (FTIR), Induced coupled plasma-Atomic emission spectroscopy (ICP-AES), and High-resolution transmission electron microscopy (HR-TEM). As a result, we found that a small amount of the ferrocene addition led to significant reductions in a on-set temperature and an activation energy of the carbon oxidation as well. An oxygenated surface complex forming at the particle surface could be thought as active species that would be readily consumed in particular at low temperature.

  • PDF

The Qualitative Rate Estimation of PAHs in Carbon Compounds of Particles in Vehicles Exhaust Gas (자동차 배기가스 중 입자상 탄소성분 내 PAHs의 정성적 비율 추정)

  • Kim, Jong Bum;Lee, Kyoung Bin;Kim, Jin Sik;Kim, Chang Hwan;Cha, Yong Ho;Kwon, Soon Bark;Bae, Gwi Nam;Kim, Shin-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.5
    • /
    • pp.449-460
    • /
    • 2014
  • Since the emergence of domestically produced automobiles in 1964, the number of automobiles in circulation in South Korea has increased constantly. With this rapidly increasing number of automobiles, automobile-induced environmental pollution has become an issue of great concern, especially with regard to air pollution. Of the carbon composites contained in automobile exhaust gas, PAHs are known to be carcinogenic and highly deleterious to humans and thus need to be urgently mitigated. To address this issue of PAHs, this study was conducted to estimate qualitative of particulate PAHs contained in carbon composites in automobile exhaust gas, by capturing all particulate matter discharged from the latter. To allow for differentiated analyses, the automobiles investigated were divided into 4 groups: gasoline vehicle, motocycle, diesel vehicle, and LPG vehicle. Samples were analyzed using two methods. First, in-depth analysis was performed on organic carbon (OC) and elemental carbon (EC) composites with analysis parameters, using the Thermal Optical Transmittance Method (NIOSH 5040). Second, for the examination of particulate PAHs, GC/MSD was used to analyze the 16 PAH species specified by the Environmental Protection Agency (EPA). The analyses yielded the findings that diesel vehicles had the highest mass concentration ($2,007{\mu}g/m^3$), followed by motocycle ($1,066{\mu}g/m^3$), LPG vehicle ($392{\mu}g/m^3$), and gasoline vehicles ($270{\mu}g/m^3$). The highest carbon concentrations in total particulate matter by vehicle weight were produced from LPG vehicle (79.8%), followed by gasoline vehicle (77.4%), motocycle (69.8%), and diesel vehicle (59.1%).