• Title/Summary/Keyword: Carbon nanotube (CNT) paper

Search Result 135, Processing Time 0.024 seconds

A Study on the Thermal Properties of CNT Reinforced Semiconductive Shield Materials for Power Cables (CNT를 첨가한 전력케이블용 반도전 재료의 열적특성에 관한 연구)

  • Yang, Hoon;Kook, Jeong-Ho;Bang, Jeong-Hwan;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1062-1067
    • /
    • 2007
  • In this paper, we have investigated thermal properties of semiconductive shield materials for power cables. EEA (Ethylene Ethyl Acrylate) was used for base polymer and TGA (Thermal Gravimetric Analysis) and AFM (Atomic Force Microscope) were investigated with various carbon black and CNT (carbon nanotube) contents. When CNT reinforced composites and conventional composite were investigated with TGA, we knew that thermal properties of CNT reinforced composite were better than them of conventional composite. To investigate roughness, we used AFM. Before and after aging, AFM was applied and after aging, roughness was increased. As a result, suitable CNT and CB(carbon black) content is CNT:CB=50:50.

Properties of Styrene-Butadiene Rubber Nanocomposites Reinforced with Carbon Black, Carbon Nanotube, Graphene, Graphite

  • Song, Sung-Ho;Kwon, O-Seok;Jeong, Ho-Kyun;Kang, Yong-Gu
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.104-110
    • /
    • 2010
  • The characteristics of all polymer composites containing carbon materials are determined by four factors: component properties, composition, structure and interfacial interactions. The most important filler characteristics are particle size, size distribution, specific surface area and particle shape. As a consequence, in this paper we discuss the aspects of the mechanical, electrical and thermal properties of composites with different fillers of carbon black, carbon nanotube (CNT), graphene and graphite and focus on the relationship between factors and properties, as mentioned above. Accordingly, we fabricate rubber composites that contain various carbon materials in carbon black-based and silica based-SBR matrixes with dual phase fillers and use scanning electron microscopy, Raman spectroscopy, a rhometer, an Instron tensile machine, and a thermal conductivity analyzer to evaluate composites' mechanical, fatigue, thermal, and electronic properties. In mechanical properties, hardness and 300%-modulus of graphene-composite are sharply increased in all cases due to the larger specific surface. Also, it has been found that the thermal conductivity of the CNT-composite is higher than that of any of the other composites and that the composite with graphene has the best electrical properties.

A Theoretical Study on STM image of Carbon Nanotube (탄소나노튜브 표면의 STM 이미지를 통한 전기적 특성 연구)

  • 문원하;황호정
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.314-317
    • /
    • 2002
  • Since the early work of Tersoff and Hamann on the theory of the scanning tunneling microscope (STM), many theoretical approaches have been developed in order to gain further physical insight into the real space image that this technique provides. In this Paper, the STM image of Carbon nanotubes (CNT's) was calculated through the theoretical study. The optimized structure of CNT's was simulated using Brenner's hydrocarbon potential. The structure of simulation is (5. 5) armchair CNT and (10. 0) zigzag CNT. Also we have used that the extended Huckel tight binding (EHTB) theory already provides a fairly good qualitative description of the main processes that control the final contrast in the STM image. we found that the shape of the calculated images is hardly dependent on the exact electronic charge distribution at the surface. The STM images are not too sensitive to the precise electronic structure but, rather, they reflect its qualitative features. As a result of the simulation, The STM images of CNT's and the electronic density distribution were investigated. It found that the EHTB theory is appropriate for STM image calculation and that the STM images are in agreement with the result of Experiment.

  • PDF

A Study on the Sinterning of the Carbon Nanotube/Metal Composites for the Heat Transfer Enhancement (열전달 촉진을 위한 탄소나노튜브(CNT)/금속 복합체 소결 코팅에 관한 연구)

  • Zheng, XiRu;Kim, Min Soo;Park, Chan Woo
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.373-379
    • /
    • 2013
  • The coating of metal surface with carbon nanotubes (CNTs) has been studied for the heat transfer enhancement of the boiling and condensation of refrigerant. The MWCNT/copper composite powder was made by the attrition ball milling, which has been coated on the copper wafer by electrostatic powder coating and sintered with electric furnace. In this paper, experiments were performed to assess the characterization and comparison of CNT before and after sinterning and the morphology changes of the CNT/Cu-coated surface. The samples were examined by the scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDAX) and raman spectroscopy. To verify the heat transfer enhancement, boiling heat transfer tests were performed.

A Study on Heating Element Properties of Carbon Nanotube/Silicon Carbonitride Composite Sheet using Branched Structured Polysilazane as Precursor (가지 달린 구조의 폴리실라잔을 전구체로 이용해 제조한 카본 나노튜브/실리콘 카보나이트라이드 복합체 시트의 발열특성에 관한 연구)

  • Huh, Tae-Hwan;Song, Hyeon Jun;Jeong, Yeong Jin;Kwark, Young-Je
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.395-400
    • /
    • 2020
  • In this paper, we manufactured silsesquiaznae (SSQZ)-coated carbon nanotube (CNT) surface heating elements, which allowed stable heating at high temperatures. The prepared composite sheet was confirmed by FE-SEM that the SSQZ fully coated the surface of CNT sheet. Furthermore, it was also confirmed that the silicon carbonitride (SiCN) ceramic formed by heat treatment of 800℃ have no defects found and maintain intact structure. The CNT/SiCN composite sheet was able to achieve higher thermal stability than raw CNT sheets in both nitrogen and air atmosphere. Finally, the CNT/SiCN composite sheet was possible to heat up at a temperature of over 700℃ in the atmosphere, and the re-heating was successfully operated after cooling.

Comparison of Ablation Characteristics of Carbon Nanotube reinforced Hybrid Al2O3 by using Ultrashort Pulse Laser (순수 알루미나와 탄소나노튜브 강화 알루미나 복합체의 극초단 펄스레이저 가공특성 비교)

  • Lee, Jun-Young;Yoon, Ji-Wook;Kang, Myung-Chang;Cho, Sung-Hak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.23-29
    • /
    • 2013
  • In this paper, pure $I_{ph}$ and hybrid carbon nanotube reinforced $I_{ph}$ were sintered using the SPS(spark plasma sintering) method for high densification. A nanosecond laser (${\lambda}=1063nm$, ${\tau}P=10ns$) and a femtosecond laser (${\lambda}=1027nm$, ${\tau}P=380fs$) were installed on an optical system for the micromachining test. The ablation characteristics of the pure $I_{ph}$ and CNT/$I_{ph}$ composites, such as thermal effect and ablation depth, were investigated using FE-SEM and a confocal microscope device. Laser machining results for the two mating materials showed improved performances: CNT/$I_{ph}$ composites showed good surface morphology of hole drilling without a melting zone due to the composites' high thermal properties; also, the ablated depth of CNT/$I_{ph}$ was higher than that of pure $I_{ph}$.

A Carbon Nanotube Field Emitter with a Triode Configuration for a Miniature Mass Spectrometer (초소형 질량분석기를 위한 삼극관 구조의 탄소나노튜브 전자방출원)

  • Lee, Yu-Ri;Lee, Ki-Jung;Hong, Nguyen Tuan;Lee, Soon-Il;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1001-1006
    • /
    • 2012
  • This paper presents a carbon nanotube (CNT) triode-structure field emitter as an ion source in a micro time-of-flight mass spectrometer(TOF-MS). In the ion source by field emission, the electrons emitted from cathodes under an electric field accelerated to the anode and ionize gas molecules by impact before arriving the anode. The generated positive ions are to be accelerated to the ion collector. Whereas most of ions are drawn to the cathodes in diode field emitters, a grid in the triode field emitter prevents the ions from being drawn to the cathodes. The triode field emitter is fabricated by micromachining. The cathode is composed of six CNT cylinders. The total size of the fabricated device is $8.0{\times}7.3{\times}1.9mm^3$. The anode and the grid current of the fabricated CNT field emitter were measured for various anode and grid voltages. When the anode and the grid voltages are 1000 V and 990 V, respectively, the emission current passing through the ionization region is 8.6 ${\mu}A$, which is a sufficient emission current for ionization and mass spectrometry.

A Study on the Improvement of Mechanical and Chemical Properties in Nano Semiconducting Materials (나도 반도전층 재료의 기계적/화학적 특성 향상에 관한 연구)

  • Shin, Dong-Hoon;Kook, Jeong-Ho;Nah, Chang-Woon;Park, Dae-Hee;Yang, Jong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.739-744
    • /
    • 2007
  • In this paper, we have investigated mechanical and chemical properties by changing the content of carbon nanotube, which is component part of semiconductive shield in underground power transmission cable. Specimens were made of sheet with the eight of those for measurement. The condition of specimens was a solid sheet. Chemical properties of specimens was measured by FT-ATR (Fourier Transform Attenuated Total Reflectance). Stress-strain of specimens was measured by TENSOMETER 2000. A speed of measurement was 200[mm/min], ranges of stress and strain were 400[Kgf/Cm] and 600[%]. We could observe (unctional group (C=O, carbonyl group) of specimens through FT-ATR. From these experimental result, the concentration of functional group [C=O] was high accor야ng to increasing the content of carbon nanotube. We could know CNT/EEA was excellent more than other specimens from above experimental results. In Addition, the elongation ratio was decreased, and yield strength was increased according to increasing the content of carbon nanotube. Also, from these experimental result, we could know that a small amount of CNT/EEA has a excellent mechanical and chemical properties.

An innovative approach for analyzing free vibration in functionally graded carbon nanotube sandwich plates

  • Shahabeddin Hatami;Mohammad J. Zarei;Seyyed H. Asghari Pari
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.19-32
    • /
    • 2024
  • Functionally graded-carbon nanotube (FG-CNT) is expected to be a new generation of materials with a wide range of potential applications in technological fields such as aerospace, defense, energy, and structural industries. In this paper, an exact finite strip method for functionally graded-carbon nanotube sandwich plates is developed using first-order shear deformation theory to get the exact natural frequencies of the plates. The face sheets of the plates are made of FG-CNT with continuous and smooth grading based on the power law index. The equations of motion have been generated based on the Hamilton principle. By extracting the exact stiffness matrix for any strip of the sandwich plate as a non-algebraic function of natural frequencies, it is possible to calculate the exact free vibration frequencies. The accuracy and efficiency of the current method is established by comparing its findings to the results of the literature works. Examples are presented to prove the efficiency of the generated method to deal with various problems, such as the influence of the length-to-height ratio, the power law index, and a core-to-face sheet thickness of the single and multi-span sandwich plates with various boundary conditions on the natural frequencies. The exact results obtained from this analysis can check the validity and accuracy of other numerical methods.

Manipulation of Carbon Nanotube Tip Using Focused Ion Beam (집속이온빔을 이용한 탄소나노튜브 팁의 조작)

  • Yoon, Yeo-Hwan;Park, June-Ki;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.122-127
    • /
    • 2006
  • This paper reports on the development of carbon nanotube tip modified with focused ion beam(FIB). We used an electric field which causes dielectrophoresis, to align and deposit CNTs on a metal-coated canning Probe Microscope (SPM) tip. Using the CNT attached SPM tip, we have obtained an enhanced resolution and wear property compared to that from the bare silicon tip through the scanning of the surface of the bio materials. The carbon nanotube tip was aligned toward the source of the ion beam allowing their orientation to be changed at precise angles. By this technique, metal coated carbon nanotube tips that are several micrometer in length are prepared for SPM.