• 제목/요약/키워드: Carbon nanotube

검색결과 1,666건 처리시간 0.061초

폴리아닐린/탄소나노튜브 폴리머 액츄에이터의 모델링, 시뮬레이션 및 제어 (Modeling, Simulation, and Control of a Polyaniline/Carbon-Nanotube Polymer Actuator)

  • 손기원;이병주;김선정;김인영;김선일
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권3호
    • /
    • pp.348-354
    • /
    • 2007
  • Polymer actuators, which are also called as smart materials, change their shapes when electrical, chemical, thermal, or magnetic energy is applied to them and are useful in wide variety of applications such as microelectromechanical systems (MEMS), machine components, and artificial muscles. For this study, Polyaniline/carbon-nanotube polymer actuator that is one of electroactive polymer actuators was prepared. Since the nonlinear phenomena of hysteresis and a step response are essential considerations for practical use of polymer actuators, we have investigated the movement of the Polyaniline/carbon-nanotube polymer actuator and have developed an integrated model that can be used for simulating and predicting the hysteresis and a step response during actuation. The Preisach hysteresis model, one of the most popular phenomenological models of hysteresis, were used for describing the hysteretic behavior of Polyaniline/carbon-nanotube polymer actuator while the ARX method, one of system identification techniques, were used for modeling a step response. In this paper, we first expain details in preparation of the Polyaniline/carbon-nanotube polymer then present the mathematical description of our model, the extraction of the parameters, simulation results from the model, and finally a comparison with measured data.

그래핀을 이용한 탄소나노튜브 전계방출소자 계면 개질 및 전자 추진계 응용 (The use of Interfacial Graphene to Carbon nanotube Point emitter for Field Emission Electric Propulsion)

  • 이정석;강태준;김대원;김용협
    • 한국항공우주학회지
    • /
    • 제40권11호
    • /
    • pp.1004-1009
    • /
    • 2012
  • 탄소나노튜브는 우수한 전기적 특성과 전계를 집중시킬 수 있는 높은 종횡비 그리고 뛰어난 열적 안정성 때문에, 높은 전류밀도와 낮은 구동전압 그리고 긴 수명시간과 같은 우수한 전계 방출 특성을 구현할 수 있는 재료이다. 탄소나노튜브를 이용하여 전계방출원을 제작하기 위해서는 금속전극에 탄소나노튜브를 고정시켜야 한다. 이때 금속과 탄소나노튜브 사이의 접촉문제가 필수적인데, 본 실험에서는 그래핀을 계면으로 사용함으로써 본 문제를 해결하였다. 이러한 시도는 금속과 탄소나노튜브 사이에 우수한 전기적 열적 계면을 형성함으로써 기존 전계방출원보다 뛰어난 전계방출 성능을 얻을 수 있게 하였다. 본 연구를 통해 탄소나노튜브 전계방출원을 전자 추진원으로의 응용이 기대된다.

Supercapacitors using Pure Single-walled Carbon Nanotubes

  • Tanaike, Osamu;Futaba, Don N.;Hata, Kenji;Hatori, Hiroaki
    • Carbon letters
    • /
    • 제10권2호
    • /
    • pp.90-93
    • /
    • 2009
  • The excellent and characteristic capacitor performance of pure single-walled carbon nanotubes (SWNTs), which differ from conventional activated carbon electrodes, is reported. SWNTs with little bundling showed higher specific capacitance than activated carbons. High operating voltage can be expected for pure SWNTs without metal contamination and graphene edge structure.

탄소 나노 재료 기반의 전기-화학적 구동기 (Nano Carbon Material Based Electrochemical Actuators)

  • 차주영;강인필
    • 한국정밀공학회지
    • /
    • 제28권11호
    • /
    • pp.1251-1258
    • /
    • 2011
  • With the help of nanoscale materials like carbon nanotube (CNT), there is the potential to develop new actuators that will provide higher work per cycle than previous actuator technologies, and generate much higher mechanical strength. In this study, the electrochemical actuation characteristics of nano carbon materials were experimentally studied to develop electrochemical actuators. The electrochemical actuators were composed of aqueous NaCl electrolyte and their actuating electrodes were made of multi-walled carbon nanotube (MWCNT)/polystyrene composite and graphene respectably. Actuation is proportional to charging transfer rate, and the electrolysis with an AC voltage input has very complex characteristics. To quantify the actuation property, the strain responses and output model were studied based on electrochemical effects between the nano carbon films and the electrolyte.

Cycling Performance of Supercapacitors Assembled with Polypyrrole/Multi-Walled Carbon Nanotube/Conductive Carbon Composite Electrodes

  • Paul, Santhosh;Kim, Jae-Hong;Kim, Dong-Won
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권2호
    • /
    • pp.91-96
    • /
    • 2011
  • Polypyrrole (PPy)/multi-walled carbon nanotube (MWCNT)/conductive carbon (CC) composites are synthesized by the chemical oxidative polymerization method. The morphology analysis of the composite materials indicates uniform coating of PPy over MWCNTs and conductive carbon. The electrochemical performances of PPy/MWCNT/CC composites with different compositions are evaluated in order to optimize the composition of the composite electrode. Galvanostatic chargedischarge measurements and electrochemical impedance spectroscopy studies prove the excellent cycling stability of the PPy/MWCNT/CC composite electrodes.

In-situ rf treatment of multiwall carbon nanotube with various post techniques for enhanced field emission

  • Ahn, Kyoung-Soo;Kim, Jun-Sik;Kim, Ji-Hoon;Kim, Chae-Ok;Hong, Jin-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.859-862
    • /
    • 2003
  • Well-aligned multiwall carbon nanotubes (MWCNTs) were prepared at low temperature of 400 $^{\circ}C$ by utilizing a radio frequency plasma-enhanced chemical vapor deposition (rf-PECVD) system. The MWCNTs were treated by an external rf plasma source and an ultra-violet laser in order to modify structural defect of carbon nanotube and to ablate possible contamination on carbon nanotube surface. Structural properties of carbon nanotubes were investigated by using a scanning electron microscopy (SEM), Raman spectroscopy, Fourier transformer Infrared spectroscopy (FTIR) and transmission electron microscope (TEM). In addition, the emission properties of the MWNTs were measured for the application of field emission display (FED) in near future. Various post treatments were found to improve the field emission property of carbon nanotubes.

  • PDF

CNT 및 CNF를 이용하여 제조된 전극 촉매 및 막 전극 접합체의 특성 (The Characteristic of Prepared Electrode Catalyst and MEA using CNF and CNT)

  • 임재욱;최대규;류호진
    • 마이크로전자및패키징학회지
    • /
    • 제11권1호
    • /
    • pp.59-64
    • /
    • 2004
  • 고분자 전해질 연료전지의 성능은 촉매 지지 물질의 특성에 의존한다. 본 연구에서는 백금 촉매의 지지체로서 CNF(carbon nanofibre)와 CNT(carbon nanotube)를 사용하였다. CNF와 CNT는 기상화학증착법과 메카노케미컬 공정에 의해 처리된 촉매를 이용하여 합성되었다. 백금은 고분자 전해질 연료전지의 적용을 위하여 CNF와 CNT로 지지되었다. 그 결과, 65 nm의 직경을 가지는 twisted CNF로 준비된 MEA가 가장 우수한 I-V 특성을 나타내는 것이 확인되었다.

  • PDF

Carbon nanotube antennas analysis and applications: review

  • El-sherbiny, Sh.G.;Wageh, S.;Elhalafawy, S.M.;Sharshar, A.A.
    • Advances in nano research
    • /
    • 제1권1호
    • /
    • pp.13-27
    • /
    • 2013
  • Carbon nanotube characterized by additional inductive effect as compared with the traditional conductors like copper wires of the same size. Consequently, carbon nanotubes have high characteristic impedance and slow wave propagation in comparison with traditional conductors. Due to these characteristics, carbon nanotubes can be used as antenna. In view of this, we describe and review the present research progress on carbon nanotube antennas. We present different analysis models and results which are developed to investigate the characteristics of CNT antennas. Then we conclude by summarizing the characteristics of CNT antennas and specifying the operating frequency limit.

온도변화에 따른 탄소 나노튜브의 분자 동역학 시뮬레이션 (Molecular Dynamic Simulation of The Temperature-Dependent Single Wall Carbon Nanotube)

  • 문원하;강정원;이영직;박수현;황호정
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.913-916
    • /
    • 1999
  • Recent developments of carbon nanotubes are reviewed[1,2,3,4]. We use Tersoff carbon potential for bonded interactions[5] and Lennard-Jones 12-6 potential for non bonding interactions[6]to describe mechanical properties of the temperature-dependent armchair single wall carbon nanotube. At first we report that through defect number and bonding energy calculation, how single wall carbon nanutube is capped in the constant temperature. (300K, 2000K, 3000K, 4000K) At second, we perform MD simulation, which are performed on the energy optimized structure of carbon nanotube.

  • PDF

탄소나노튜브 엑츄에이터의 설계에서의 유한요소모델링 기법 (Finite Element Modeling of a Carbon Nanotube Actuator)

  • 김정택;현석정;김철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.559-562
    • /
    • 2004
  • Carbon nanotube is a geometrical frame-like structure and the primary bonds between two nearest-neighboring atoms act like beam members, whereas an individual atom acts as the joint of the related beam members. The sectional property parameters of these beam members are obtained from molecular mechanics. Computations of the elastic deformation of single-walled carbon nanotubes reveal that the Young's moduli of carbon nanotubes vary with the tube diameter and are affected by their helicity. With increasing tube diameter, the Young's moduli of carbon nanotubes approach the Young's modulus of graphite.

  • PDF