• Title/Summary/Keyword: Carbon flow

Search Result 1,401, Processing Time 0.025 seconds

Separation Characteristics of $CH_4/CO_2$ Mixed Gas by Polyamide Composite Membrane (Polyamide 복합막을 이용한 메탄/이산화탄소 혼합기체의 분리 특성)

  • Lee, Jae-Hwa;Lee, Geon-Ho;Choi, Kyung-Seok;Poudel, Jeeban;Kim, Soo-Ryong;Oh, Sea-Cheon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.478-485
    • /
    • 2012
  • Polymers are widely used as membrane material for performing the separation of various gaseous mixtures due to their attractive permselective properties and high processability. The separation characteristics of $CH_4$ and $CO_2$ mixed gas using polyamide composite membrane has been studied in this work. The sample gas was prepared by mixing pure methane and carbon dioxide. Permeation tests were carried out at different operation conditions. Feed flow rates were varied between 800~1000 $cm^3/min$, and the stage cuts were varied between 50~60%. The gas inlet pressure and the temperature were varied as 6 bar and $30{\sim}70^{\circ}C$, respectively. The effects of the above mentioned parameters were investigated to estimate the permeability of $CH_4$ and $CO_2$, and the selectivity of $CO_2$ was also calculated for all conditions. The Arrhenius plots were also performed to obtaine the activation energies of $CH_4$ and $CO_2$ permeabilities.

A study of SO2 Removal Efficiency from Traditional Herbal Medicine Using Traditional & Electronic Medicine Boilers (전통약탕기와 전자약탕기를 이용한 이산화황 제거효율 연구)

  • Yang, Seung-Hee;Ryu, Seok-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.1133-1140
    • /
    • 2009
  • The purpose of this study is to determine the most efficient method of removing sulfur dioxide from traditional herbal medicine (hanyak) by slow boiling using a traditional pipkin and an electronic slow boiler. By boiling a hanyak batch containing] 56.4ppm of sulfur dioxide for one hour using a traditional pipkin, 96.7 percent of the sulfur dioxide was removed, while two hours of slow boiling removed ]00 percent. Among different cover materials placed over the pipkin during the slow boiling process including the traditional Korean paper (hanji), regular hanji, filter paper and regular paper, the traditional hanji produced the best performance of sulfur dioxide removal. The initial pH level of the traditional hanji was] 0.03. After one hour of slow boiling hanyak batches in a traditional pipkin covered with traditional hanji, where each batch contained sulfur dioxide of 48ppm, 193ppm, 753ppm and 1,506ppm respectively, the pH level of the hanji cover material was reduced to 9.37, 9.14, 8.9 and 8.03 in respective cases. Our experiment using an electronic medicine slow boiler showed 82.8 percent removal of sulfur dioxide after one hour of slow boiling a hanyak batch containing 753ppm of sulfur dioxide. When hanyak batches were boiled by placing traditional hanji, filter paper, active carbon and hardwood charcoal separately in the middle area within the electronic slow boiler, the sulfur dioxide removal rate was 73.6 percent, 72.8 percent, 73.9 percent and 69.5 percent, respectively. When charcoal was added so as to remove toxic materials from the hanyak, its presence impeded the sulfur dioxide flow and thus reduced the removal efficiency contrary to our anticipation.

Ozone-Enhanced Remediation of Diesel-Contaminated Soil (II): A Column Study (Ozone에 의한 유류오염토양 복원 연구 (II) : 토양 컬럼상에서의 오존 산화)

  • Choi, Heechul;Heechul;Lim, Hyung-Nam;Kim, Kwang-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1825-1832
    • /
    • 2000
  • Column experiments were conducted by using soil columns, to investigate feasibility and efficiency of in-situ ozone enhanced remediation for diesel-contaminated soil. The injection of gaseous ozone into soil column revealed the enhanced decomposition of ozone due to the catalytic reaction between ozone and metal (e.g., Fe, Mn etc.) oxides as evidenced by as much as 25 times shorter half-life of ozone in a sand packed column than in a glass beads packed column. Substantial retardation in the transport of and the consumption of ozone were observed in the diesel contaminated field soil and sand packed columns. After 16 hrs ozonation, 80% of the initial mass of diesel (as diesel range organic) concentration of $800{\pm}50mg/kg$, was removed under the conditions of the flow rate of 50mL/min and $6mg-O_3/min$. Whereas, less than 30% of diesel was removed in the case of air injection. Analysis of the residual TPH(total petroleum hydrocarbon) and selected 8 aliphatics of diesel compounds in the inlet and the outlet of the column confirmed that diesel nonselectively reacted with ozone and then shifted to lower carbon numbered molecules. Water content also was found to be an important parameter in employing ozone to the hydrocarbon-contaminated soil.

  • PDF

A Study on Nitrification of Raw Waters Containing Linear Alkyl Sulfate in Biological Activated Carbon (생물활성탄을 이용한 Linear Alkyl Sulfate함유 원수에서의 질산화에 관한 연구)

  • Park, Seong Sun;Chang, Ji Soo;Yu, Myong Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.3
    • /
    • pp.116-126
    • /
    • 1995
  • The purpose of this study was to investigate the removal of ammonium nitrogen by biological nitrification in raw water containing LAS using BAC. At batch teats, LAS removal by ozone followed the first order reaction, and the rate constants(k) by ozone dose 1, 3mg/min.L were $0.040min^{-1}$, $0.062min^{-1}$ respectively. Therefore, the more ozone was dosed, the higher LAS was removed The reaction between ozone and ammonium nitrogen also followed the first order, and rate constants(k) at pH7,8 and 9 were $8.9{\times}10^{-4}min-1$, $3.8{\times}10^{-3}min^{-1}$, and $2.9{\times}10^{-2}min^{-1}$ respectively at ozone dose of 3mg/min.L . Therefore, ammonium nitrogen was little removed by ozone under neutral pH of 7. The continuous flow apparatus had four sets composed of a ozone contacter and a GAC column. Through continuous filtration test for 50days, the following conclusions were derived; (1) LAS was removed 23%, 30% respectively by ozone dose 1, 3mg/L, and was not detected in all column effluents during the period of experiment. Therefore, it appeared that adsorption capacities of each column still remained. (2) Ammonium nitrogen concentration after ozone contact varied little in raw Water because pH of raw water was from 6 to 7, and was transfered to nitrite and nitrate within GAC columns as the result of staged nitrification. After 30days, nitrite was not detected in all column effluents due to biological equilbrium between nitro semonas and nitrobacter Average removals of ammonium nitrogen in each column after the lapse of 30days were the following; ${\cdot}$ column A (ozone dose 3mg/L, EBCT 9.5min): about 100% ${\cdot}$ column B (ozone dose 1mg/L, EBCT 9.5min): 91% ${\cdot}$ column C (ozone dose 3mg/L, EBCT 14.2min): about 100% ${\cdot}$ column D (ozone dose 0mg/L, EBCT 9.5min): 53% Though column A and C reached nitrification of about 100%, column C (longer EBCT than column A) was more stable than column A. (3) After backwash, nitrification reached steady state within 5 to 8 hours. Therefore, nitrification was not greatly affected by backwash. (4) According to the nitrification capacity in depth of column A, C, where 100% nitrification occured. LAS was removed within 20cm, while ammonium nitrogen required more depth to be removed by nitrification.

  • PDF

Preparation of Titanyl Chlorde (鹽化티타닐 製造에 關한 硏究)

  • Chyun, Byong-Doo;Shin, Yoon-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.15-17
    • /
    • 1957
  • 1. Preparation of Titanium tetrachloride; The following precesses were strictly followed as the preliminary step to obtain pure $TiOCl_2$, titanyl chloride; First, pure Titanium Oxide mixed with carbon is rolled into pills. After drying up perfectly, these pills are heated at 900∼1000${\circ}C$. And then the pills are subjected to the flow of $Cl_2$ gas in a quartz tube heated to 900-1000${\circ}C$. Thus Titanium tetrachloride is obtained. 2. Preparation of $TiOCl_2$ ; Yellowish trobrown solution is made by pouring 80 g of conc. HCl (sp.gr. 1.19) to 45 gr of Titanium tetrachloride (approx. 2 times of theoretical amount). Then this solution is kept settled for 5-days in a desiccator filled with phosphorous pentoxide at room temperature. As the colorless amorphous solid thus obtained is washed with aceton, 36.5 g of the pure salt are obtained. 3. Determination of composition. The analysis of the sample taken from the deposit desiccated gives the following data; (A) Qualitative analysis; a) $Ti(OH)_4$ is precipitated by adding NaOH in water solution of the salt. b) Adding $AgNO_3$ solution, the water solution of the salt gives white precipitate of AgCl. c) When acid and $H_2O_2$ are added, the solution turns its color to redish brown (This proves that $TiO^{++}$ was converted into $TiO^{++}$ by oxidation of $H_2O_2$. (B) Quantitative analysis; a) $Ti(OH)_4$ precipitated by $10{\%}$ NaOH isalitatsubjected consecutively to the filtration and ignition in porcelain crucible at approx. 1000${\circ}C$. , then $TiO_2$ thus formed is weighed and calculated into Ti content. b) Chlorine involved in water solution of the salt is determined by Vorhardt method. Result: The values obtained from previous analysis, devied by their atomic weight gives the following composition: Ti : Cl = 1 : 2 Therefore $TiOCl_2$ should be given as its molecular formula. 4. Summary. When $TiCl_4$ is additated into conc. HCl, $TiO^{++}$ formed exists as a stable form, and forms $TiOCl_2$. However $TiOCl_2$ is unstable to heating. When the temperature is raised to $65{\circ}C$the decomposition of the solution is accelerated, and gives $TiO_2$ aq. $TiOCl_2$ in addition is highly hygroscopic.

  • PDF

$H_{2}S$ Removal and $CO_{2}/CH_{4}$ Separation of Ternary Mixtures Using Polyimide Hollow Fiber Membrane (폴리이미드 중공사막을 이용한 혼합기체로부터 $H_{2}S$ 제거 및 $CO_{2}/CH_{4}$ 분리에 관한 연구)

  • Park, Bo-Ryoung;Kim, Dae-Hoon;Jo, Hang-Dae;Seo, Yong-Seog;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.250-255
    • /
    • 2011
  • In this study, by using the polymeric membrane separation process, the $CO_{2}/CH_{4}$ separation and $H_{2}S$ removal from biogas were performed in order to $CH_{4}$ purification and enrichment for the fuel cell energy source application. Fibers were spun by dry/wet phase inversion method. The module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy(SEM) studies showed that the produced fibers typically had an asymmetric structure; a dense top layer supported by a porous, sponge substructure. The permeance of $CO_{2}$ and $CO_{2}/CH_{4}$ selectivity increased with pressure and temperature. Mixture gas with increasing pressure and temperature, removal efficiency of the $CO_{2}$ and $H_{2}S$ were decreased while concentration of $CH_{4}$ was increased up to 100%. When retentate flow rate was increased with the decreasing of pressure and temperature the $CH_{4}$ recovery ratio in retentate side was increased while the $CH_{4}$ purity in retentate side was decreased.

Current biotechnology for the increase of vegetable oil yield in transgenic plants (식물 지방산 생산량의 증진을 위한 생명공학 연구현황)

  • Lee, Kyeong-Ryeol;Choi, Yun-Jung;Kim, Sun-Hee;Roh, Kyung-Hee;Kim, Jong-Bum;Kim, Hyun-Uk
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.241-250
    • /
    • 2011
  • The most part of vegetable oils is accumulated as storage lipid, triacylglycerol (TAG) in seed and used as energy source when seed is germinated. It is also used as essential fatty acids and energy source for human and animal. Recently, vegetable oils have been more and more an important resource because of the increasing demand of vegetable oils for cooking and industrial uses for bio-diesel and industrial feedstock. In order to increase vegetable oils using biotechnology, over-expressing or repressing the regulatory genes involved in the flow of carbon into lipid biosynthesis is critical during seed development. In this review, we described candidate genes may influence oil amount and investigate their potential for oil increase. Genes involved in the regulation from biosynthesis of fatty acids to the accumulation oils in seed can be classified as follows: First, genes play a role for synthesis precursor molecules for TAG. Second, genes participate in fatty acid biosynthesis and TAG assembly. Lastly, genes encodes transcription factors involved in seed maturation and accumulation of seed oil. Because factors/genes determining oil quantity in seed is complex as mentioned, recently regulation of transcription factors is being considered more favorable approach than manipulate multiple genes for increasing oil in transgenic plants. However, it should be figured out the problem that bad agricultural traits induced by the overexpression of transcription factor gene.

Adsoptive Properties of Cellulose Thermally Treated at Low Temperature and Its Solubility to Water (저온 열처리 셀룰로오스의 염기성가스 흡착과 용해특성)

  • Jo, Tae-Su;Ahn, Byung-Jun;Choi, Don-Ha;Akihiko, Miyakoshi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.63-70
    • /
    • 2005
  • The purpose of this study was to investigate how to modify the physical properties of cellulose after thermal treatment. Cellulose was treated between $225^{\circ}C$ and $325^{\circ}C$ for 3 hrs under air flow, and then the thermally treated cellulose was measured to specific surface area, constitute elements, consumption ofacid and base, as well as the adsorption capacity of ethylamine vapor. The higher was the treating temperature from $225^{\circ}C$ to $325^{\circ}C$, the lower was the total yield of cellulose. Elemental analysis revealed that carbon content in thermally treated cellulose was gradually increased in proportion to temperature increment. The amount of acidic functional groups tended to increase up to $300^{\circ}C$, after then to be lowered slightly. In principle, no alkaline functional groups were found in thermally treated cellulose. In case of treatment with $325^{\circ}C$, only a few amount of alkaline functional groups were detectable. Specific surface area of thermally treated cellulose are determined to $1.9m^2/g$, which value can become higher when the treated temperature rises. The thermally treated cellulose at $275^{\circ}C$ shows the highest adsorption capacity of ethylamine at $40^{\circ}C$ for 4 hrs. Solubility of those two celluloses with WPG (Weight Percent Gain) value of 113% and 108%, respectively, was determined to almost 100%. X-ray diffractogram of thermally treated cellulose suggested that the crystalline structure of cellulose began to be destroyed at the temperature of $275^{\circ}C$. As a conclusion, changes of such a physical properties make it possible to weaken inter and/or intra hydrogen bond in crystal region of cellulose macromolecules. When thermally treated cellulose adsorbs ethylamine, it turns to be well soluble to water.

Field Applicability of Scale Prevention Technologies for Drainage Holes (배수공 내 스케일 생성 방지 기술의 현장 적용성 평가)

  • Chu, Ickchan;Lee, Jonghwi;Kim, Hyungi;Kim, Kyungmin;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.45-51
    • /
    • 2012
  • The calcium hydroxide$(Ca(OH)_2)$ which is the cement hydrate flowed into the tunnel by groundwater is reacted with microorganism in the soil, carbon dioxide$(CO_2)$ and the vehicle's exhaust gas$(SO_3)$. So its by-products are precipitated at the drainage pipe and these cause the drainage clogging. By this phenomenon, Degradation of water flow at the drainage system of the tunnel occurred and also pore water pressure is increased. Hence the acceleration of seepage and degradation of lining is occurred. The purpose of this study is to evaluate the field applicability of the Quantum Stick and Magnetic treatment in prevention of scale deposits at the Namsan ${\bigcirc}{\bigcirc}$ tunnel and the Zone ${\bigcirc}{\bigcirc}{\bigcirc}$ of subway. These technologies were installed into drainpipes with their performance monitored through occasional site visits. SEM and XRD were also performed on scale collected from these drainpipes. As a result, in case which factor technology is applied, scale creation is remarkably decreased and especially Quantum Stick treatment performing better than Magnetic treatment. Therefore, additional application of Quantum Stick or Magnetic treatment to the existing drainage is expected to decrease the drainage clogging of the drainage.

Study on the elution of biostimulant for in-situ bioremediation of contaminated coastal sediment (오염된 연안저질의 현장생물정화를 위한 미생물활성촉진제의 용출특성 연구)

  • Woo, Jung-Hui;Song, Young-Chae;Senthilkumar, Palaninaicker
    • Journal of Navigation and Port Research
    • /
    • v.38 no.3
    • /
    • pp.239-246
    • /
    • 2014
  • A study on the elution characteristics of biostimulating agents (sulfate and nitrate) from biostimulants which are used for in-situ bioremediation for the coastal sediment contaminated with organic matter was performed. The biostimulating agents were mixed with the coastal sediment, and then massed the mixture into ball. Two kinds of ball type biostimulant were prepared by coating the ball surface with two different polymers, cellulose acetate and polysulfone. A granular type biostimulant (GTB) was also prepared by impregnating a granular activated carbon in the biostimulating agent solution. The image of scanning electron microscopy for the biostimulant coated with cellulose acetate (CAB) showed that the inner side of the coating layer consisted of irregular and bigger size of pores, and the surface layer had tight structure like beehive. For the biostimulant coated with polyfulfone (PSB), the whole coating layer had a fine structure without pore. The elution rate of the biostimulating agents for the CAB was higher than that for the PSB, and the elution rate for the GTB was considerably higher than that for the PSB in distilled water as well as in sea water. The elution rate of the biostimulating agents in turbulent water flow was about 3 times higher than that in standing water, and the elution rate of nitrate was higher than that of sulfate from the stimulating agents.