• Title/Summary/Keyword: Carbon film electrode

Search Result 161, Processing Time 0.029 seconds

Low Potential Amperometric Determination of Ascorbic Acid at a Single-Wall Carbon Nanotubes-Dihexadecyl Hydrogen Phosphate Composite Film Modified Electrode

  • Fei, Junjie;Wu, Kangbing;Yi, Lanhua;Li, Junan
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1403-1409
    • /
    • 2005
  • A sensitive and selective electrochemical method was developed for the amperometric determination of ascorbic acid (AA) at a glassy carbon electrode (GCE) modified with single-wall carbon nanotubesdihexadecyl hydrogen phosphate (SWNT-DHP) composite film. The SWNT-DHP composite film modified GCE was characterized with SEM. The SWNT-DHP composite film modified GCE exhibited excellent electrocatalytic behaviors toward the oxidation of AA. Compared with the bare GCE, the oxidation current of AA increased greatly and the oxidation peak potential of AA shifted negatively to about -0.018 V (vs. SCE) at the SWNT-DHP composite film modified GCE. The experimental parameters, which influence the oxidation current of AA, were optimized. Under the optimal conditions, the amperometric measurements were performed at a applied potential of -0.015 V and a linear response of AA was obtained in the range from 4 ${\times}$ $10^{-7}$ to 1 ${\times}$ $10^{-4}$ mol $L^{-1}$ and with a limit of detect (LOD) of 1.5 ${\times}$ $10^{-7}$ mol $L^{-1}$. The interferences study showed that the SWNT-DHP composite film modified GCE exhibited good sensitivity and excellent selectivity in the presence of high concentration uric acid and dopamine. The proposed procedure was successfully applied to detect AA in human urine samples with satisfactory results.

Anodic Stripping Voltammetric Detection of Arsenic(III) at Platinum-Iron(III) Nanoparticle Modified Carbon Nanotube on Glassy Carbon Electrode

  • Shin, Seung-Hyun;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3077-3083
    • /
    • 2010
  • The electrochemical detection of As(III) was investigated on a platinum-iron(III) nanoparticles modified multiwalled carbon nanotube on glassy carbon electrode(nanoPt-Fe(III)/MWCNT/GCE) in 0.1 M $H_2SO_4$. The nanoPt-Fe(III)/MWCNT/GCE was prepared via continuous potential cycling in the range from -0.8 to 0.7 V (vs. Ag/AgCl), in 0.1 M KCl solution containing 0.9 mM $K_2PtCl_6$ and 0.6 mM $FeCl_3$. The Pt nanoparticles and iron oxide were co-electrodeposited into the MWCNT-Nafion composite film on GCE. The resulting electrode was examined by cyclic voltammetry (CV), scanning electron microscopy (SEM), and anodic stripping voltammetry (ASV). For the detection of As(III), the nanoPt-Fe(III)/MWCNT/GCE showed low detection limit of 10 nM (0.75 ppb) and high sensitivity of $4.76\;{\mu}A{\mu}M^{-1}$, while the World Health Organization's guideline value of arsenic for drinking water is 10 ppb. It is worth to note that the electrode presents no interference from copper ion, which is the most serious interfering species in arsenic detection.

Characteristics of Sputtering Mo Doped Carbon Films and the Application as the Gate Electrode in Organic Thin Film Transistor (스퍼터링 Mo 도핑 탄소박막의 특성과 유기박막트랜지스터의 게이트 전극으로 응용)

  • Kim, Young Gon;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.23-26
    • /
    • 2017
  • Mo doped carbon (C:Mo) thin films were fabricated with various Mo target power densities by unbalanced magnetron sputtering (UBM). The effects of target power density on the surface, structural, and electrical properties of C:Mo films were investigated. UBM sputtered C:Mo thin films exhibited smooth and uniform surfaces. However, the rms surface roughness of C:Mo films were increased with the increase of target power density. Also, the resistivity value of C:Mo film as electrical properties was decreased with the increase of target power density. From the performance of organic thin filml transistor using conductive C:Mo gate electrode, the carrier mobility, threshold voltage, and on/off ratio of drain current (Ion/Ioff) showed $0.16cm^2/V{\cdot}s$, -6.0 V, and $7.7{\times}10^4$, respectively.

Laser Direct Patterning of Carbon Nanotube Film

  • Yun, Ji-Uk;Jo, Seong-Hak;Jang, Won-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.203-203
    • /
    • 2012
  • The SWCNTs network are formed on various plastic substrates such as poly(ethylene terephthalate) (PET), polyimide (PI) and soda lime glass using roll-to-roll printing and spray process. Selective patterning of carbon nanotubes film on transparent substrates was performed using a femtosecond laser. This process has many advantages because it is performed without chemicals and is easily applied to large-area patterning. It could also control the transparency and conductivity of CNT film by selective removal of CNTs. Furthermore, selective cutting of carbon nanotube using a femtosecond laser does not cause any phase change in the CNTs, as usually shown in focused ion beam irradiation of the CNTs. The patterned SWCNT films on transparent substrate can be used electrode layer for touch panels of flexible or flat panel display instead indium tin oxide (ITO) film.

  • PDF

Electrochemical Properties of $V_2O_5$ Electrodes as a Function of Additon of Carbon for Film Supercapacitor (Film형 Supercapacitor용 $V_2O_5$전극의 Carbon 첨가에 따른 전기화학적 특성)

  • Kim, Myung-San;Kim, Jong-Uk;Gu, Hal-Bon;Park, Bok-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.39-41
    • /
    • 2000
  • Carbon is an attractive candidate for use in eletrochemical supercapacitors that depend on charge storage in the electrode/eletorlyte international double layer. Property of an electrical double layer capacitor depend both on the technique used to prepare the electrode and on the current collector structure. The study is to research that $V_2O_5$-carbon (SP270) composite electrode for supercapacitor. The discharge capacitance of $V_2O_5$-SP270 (20wt%) in 1st and 35cyc1e was 14F/g and 8.5F/g at current density of $0.1mA/cm^2$. The discharge process of $V_2O_5$-SP270 (20wt%) composite electrode is larger than that others.

  • PDF

Electrochemical Characteristics of DAAQ/CNFs electrode for Supercapacitor (슈퍼커패시터용 DAAQ/CNFs 전극의 전기화학적 특성)

  • Kim, Hong-Il;Choi, Weon-Kyung;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1184-1187
    • /
    • 2003
  • Electrochemical capacitors are becoming attractive energy storage systems particularly for applications involving high power requirements such as hybrid systems consisting of batteries and electrochemical capacitors for electric vehicle propulsion. A new type electric double layer capacitor (EDLC) was constructed by using carbon nanofibers (CNFs) and DAAQ(1,5-diaminoanthraquinone) electrode. Carbonaceous materials are found in variety forms such as graphite, diamond, carbon fibers etc. While all the carbon nanofibers include impurities such as amorphous carbon, nanoparticles, catalytic metals and incompletely grown carbons. We have eliminated of Ni particles and some carbonaceous particles in nitric acid. Nitric acid treated CNFs could be covered with very thin DAAQ oligomer from the results of CV and TG analyses and SEM images. DAAQ oligomer film exhibited a specific capacity as 45-50 Ah/kg in 4M $H_2SO_4$. We established Process Parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured CNFs electrodes using controlled solution chemistry. As a result, CNFs coated by DAAQ composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency.

  • PDF

Fabrication of Carbon Film for New Light Source (광원용 탄소박막의 합성)

  • Lee, Sang-Heon;Choi, Young-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.553-554
    • /
    • 2006
  • Carbon films was grown on Si substrates using the method of electrolysis for methanol liquid. Deposition parameters for the growth of the carbon films were current density for the electrolysis. methanol liquid temperature and electrode spacing between anode and cathode. We examined electrical resistance and the surface morphology of carbon films formed under various conditions specified by deposition parameters. It was clarified that the high electrical resistance carbon films with smooth surface morphology are grown when a distance between the electrodes was relatively wider. We found that the electrical resistance in the films was independent of both current density and methanol liquid temperature for electrolysis. The temperature dependence of the electrical resistance in the low resistance carbon films was different from one obtained in graphite.

  • PDF

Chitosan-Cu-salen/Carbon Nano-Composite Based Electrode for the Enzyme-less Electrochemical Sensing of Hydrogen Peroxide

  • Jirimali, Harishchandra Digambar;Saravanakumar, Duraisamy;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.169-175
    • /
    • 2018
  • Cu-Salen complex was prepared and attached into chitosan (Cs) polymer backbone. Nanocomposite of the synthesized polymer was prepared with functionalized carbon nano-particles (Cs-Cu-sal/C) to modify the electrode surface. The surface morphology of (Cs-Cu-sal/C) nanocomposite film showed a homogeneous distribution of carbon nanoparticles within the polymeric matrix. The cyclic voltammogram of the modified electrode exhibited a redox behavior at -0.1 V vs. Ag/AgCl (3 M KCl) in 0.1 M PB (pH 7) and showed an excellent hydrogen peroxide reduction activity. The Cs-Cu-sal/C electrode displays a linear response from $5{\times}10^{-6}$ to $5{\times}10^{-4}M$, with a correlation coefficient of 0.993 and detection limit of $0.9{\mu}M$ (at S/N = 3). The sensitivity of the electrode was found to be $0.356{\mu}A\;{\mu}M^{-1}\;cm^{-2}$.

Amperometric Immunosensor for Myeloperoxidase in Human Serum Based on a Multi-wall Carbon Nanotubes-Ionic Liquid-Cerium Dioxide Film-modified Electrode

  • Lu, Lingsong;Liu, Bei;Liu, Chenggui;Xie, Guoming
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3259-3264
    • /
    • 2010
  • A label-free amperometric immunosensor has been proposed for the detection of myeloperoxidase (MPO) in human serum. To fabricate such an immunosensor, a composite film consisting of N,N-dimethylformamide (DMF), multiwall carbon nanotubes (MWCNTs) and 1-ethyl-3-methyl imidazolium tetrafluoroborate ($EMIMBF_4$) suspension was initially formed on a glassy carbon electrode (GCE). Then cerium dioxide ($CeO_2$) dispersed by chitosan was coated on the GCE. After that, MPO antibodies (anti-MPO) were attached onto the nano$CeO_2$ surface. With a noncompetitive immunoassay format, the antibody-antigen complex formed between the immobilized anti-MPO and MPO in sample solution. The immunosensor was characterized by cyclic voltammetry, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The factors influencing the performance of the immunosensor were studied in detail. Under optimal conditions, the current change before and after the immunoreaction was proportional to MPO concentration in the range of 5 to $300\;ng\;mL^{-1}$ with a detection limit of $0.2\;ng\;mL^{-1}$.

Increased Sensitivity of Carbon Nanotube Sensors by Forming Rigid CNT/metal Electrode

  • Park, Dae-Hyeon;Jeon, Dong-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.348-348
    • /
    • 2011
  • Carbon nanotube (CNT) field effect transistors and sensors use CNT as a current channel, of which the resistance varies with the gate voltage or upon molecule adsorption. Since the performance of CNT devices depends very much on the CNT/metal contact resistance, the CNT/electrode contact must be stable and the contact resistance must be small. Depending on the geometry of CNT/electrode contact, it can be categorized into the end-contact, embedded-contact (top-contact), and side-contact (bottom-contact). Because of difficulties in the sample preparation, the end-contact CNT device is seldom practiced. The embedded-contact in which CNT is embedded inside the electrode is desirable due to its rigidness and the low contact resistance. Fabrication of this structure is complicated, however, because each CNT has to be located under a high-resolution microscope and then the electrode is patterned by electron beam lithography. The side-contact is done by depositing CNT electrophoretically or by precipitating on the patterned electrode. Although this contact is fragile and the contact resistance is relatively high, the side-contact by far has been widely practiced because of its simple fabrication process. Here we introduce a simple method to embed CNT inside the electrode while taking advantage of the bottom-contact process. The idea is to utilize a eutectic material as an electrode, which melts at low temperature so that CNT is not damaged while annealing to melt the electrode to embed CNT. The lowering of CNT/Au contact resistance upon annealing at mild temperature has been reported, but the electrode in these studies did not melt and CNT laid on the surface of electrode even after annealing. In our experiment, we used a eutectic Au/Al film that melts at 250$^{\circ}C$. After depositing CNT on the electrode made of an Au/Al thin film, we annealed the sample at 250$^{\circ}C$ in air to induce eutectic melting. As a result, Au-Al alloy grains formed, under which the CNT was embedded to produce a rigid and low resistance contact. The embedded CNT contact was as strong as to tolerate the ultrasonic agitation for 90 s and the current-voltage measurement indicated that the contact resistance was lowered by a factor of 4. By performing standard fabrication process on this CNT-deposited substrate to add another pair of electrodes bridged by CNT in perpendicular direction, we could fabricate a CNT cross junction. Finally, we could conclude that the eutectic alloy electrode is valid for CNT sensors by examine the detection of Au ion which is spontaneously reduced to CNT surface. The device sustatined strong washing process and maintained its detection ability.

  • PDF