• Title/Summary/Keyword: Carbon film

Search Result 1,330, Processing Time 0.023 seconds

Fabrication and Characterization of Portable Electronic Nose System for Identification of CO/HC Gases (CO/HC 가스 인식을 위한 소형 전자코 시스템의 제작 및 특성)

  • Hong, Hyung-Ki;Kwon, Chul-Han;Yun, Dong-Hyun;Kim, Seung-Ryeol;Lee, Kyu-Chung;Kim, In-Soo;Sung, Yung-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.476-482
    • /
    • 1997
  • A portable electronic nose system has been fabricated and characterized using an oxide semiconductor gas sensor array and pattern recognition techniques such as principal component analysis and back-propagation artificial neural network. The sensor array consists of six thick-film gas sensors whose sensing layers are Pd-doped $WO_{3}$, Pt-doped $SnO_{2}$, $TiO_{2}-Sb_{2}O_{5}-Pd$-doped $SnO_{2}$, $TiO_{2}-Sb_{2}O_{5}-Pd$-doped $SnO_{2}$ + Pd coated layer, $Al_{2}O_{3}$-doped ZnO and $PdCl_{2}$-doped $SnO_{2}$. The portable electronic nose system consists of an 16bit Intel 80c196kc as CPU, an EPROM for storing system main program, an EEPROM for containing optimized connection weights of artificial neural network, an LCD for displaying gas concentrations. As an application the system has been used to identify 26 carbon monoxide/hydrocarbon (CO/HC) car exhausting gases in the concentration range of CO 0%/HC 0 ppm to CO 7.6%/HC 400 ppm and the identification has been successfully demonstrated.

  • PDF

Objective Aperture Effects for the Quantitative Analysis in Electron Tomography (전자토모그래피의 정량적 분석에서 대물렌즈 조리개의 영향)

  • Kim, Jin-Gyu;Lee, Sang-Hee;Kweon, Hee-Seok;Jeong, Jong-Man;Jeong, Won-Gu;Lee, Su-Jeong;Jou, Hyeong-Tae;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.38 no.4
    • /
    • pp.285-291
    • /
    • 2008
  • We have evaluated the effects of experimental factors on transmitted electron beam intensities for quantitative analysis in electron tomography. For the correct application of Beer's law in electron tomography, the transmitted beam intensity should reflect the net effect of mass properties on beam path. So, the any other effects of the objective aperture and the specimen holder on beam path should be removed. The cut-off effects of objective aperture were examined using Quanti-foil holey carbon film and a transmission electron microscope operated at 120 kV. The transmitted beam intensities with $30{\mu}m$ objective aperture dropped about 16.7% compared to electron beam intensities without the objective aperture. Also, the additional losses of about 14.2% at high tilt angles were occurred by cut-off effects of the objective apertures. For the precise quantitative analysis in electron tomography, the effect of the objective aperture on transmitted electron beam intensities should be considered. It is desirable that 2-D tilt series images are obtained without the objective aperture for correct application of Bee's law.

Current Research Status of Postharvest and Packaging Technology of Oriental Melon (Cucumis melo var. makuwa) in Korea (국내 참외의 수확 후 관리 및 포장기술 연구)

  • Kim, Jung-Soo;Choi, Hong-Ryul;Chung, Dae-Sung;Lee, Youn-Suk
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.902-911
    • /
    • 2010
  • Oriental melon ($Cucumis$ $melo$ var. $makuwa$) is a popular and high-value market fruit cultivated in Korea. Consumers are becoming increasingly interested in oriental melon as a healthy diet over the past few years. However, the melons have relatively high quality loss because the fruit are mainly produced for a limited period of time in the summer season. Lack of the proper postharvest treatments and high temperature exposure at harvest or during distribution are the most critical environmental factors limiting postharvest life of fruit. This review focuses on the overview of current research studies for postharvest treatment and functional packaging technology of oriental melon in Korea. Major physiological problems of the harvest fruit include the ripening process in quality changes of the produce such as loss of weight, firmness, flavor, and decay during the storage periods. Low temperature at 7 to $10^{\circ}C$ with high relative humidity of 90 to 95% is the suitable environmental condition used to maintain the quality of fresh oriental melon. Controlled atmosphere (CA) storage or modified atmosphere (MA) packaging can be used as supplemental treatments to extend postharvest-life. For oriental melon, an optimum CA is currently recommended to be 2-3% oxygen and 5-10% carbon dioxide atmosphere. Precooling, pretreatments of ethylene action and functional packaging system can be applied to oriental melon after harvest in order to extend storage life. Major active packaging technologies are concerned with a selectively gas permeable film related to respiration of produce and the packaging applications of ethylene removal, antimicrobial, and antifogging substances to keep the effective freshness of fruit.

Pre-treatment condition and Curing method for Fabrication of Al 7075/CFRP Laminates (Al 7075/CFRP 적층 복합재료 제조를 위한 전처리 조건과 경화방법 연구)

  • 이제헌;김영환
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.42-53
    • /
    • 2000
  • A study has been made to establish an optimum condition in the surface treatment and curing method that is important for the fabrication of Al 7075/CFRP laminates. PAA(Phosphoric Acid Anodizing) provided a good adhesive strength and FPL(Sulfuric / Sodium Dichromate Acid Etching) had a similar adhesive strength with PAA. On the other hand, the poor adhesive strength was shown on vapor degrease and CAA(Chromic Acid Anodizing). By using the atomic force microscope(AFM), it was found that the PAA oxide surface obviously had a greater degree of microroughness as compared to vapor degrease, CAA and FPL treated surfaces. These results support the concept of a mechanical interlocking of the adhesive with-in the oxide pores as the predominant adhesion mechanism. In curing methods, the adhesive strength of co-curing method was higher than that of secondary curing method. With respect to stability of specimen shape, the secondary curing method was better than co-curing method. DMA(Dynamic Mechanical Analysis) test revealed $T_g$ in curing times over 60 min is nearly same, so it is estimated they will have similar degree of curing and joint durability in using FM300M adhesive film.

  • PDF

Effects of Phytoncide Treatment on the Physicochemical, Microbiological, and Sensory Characteristics of Fresh-cut Lettuce (Phytoncide 처리가 신선편이 양상추의 저장 중 이화학적, 미생물학적 및 관능적 특성에 미치는 영향)

  • Kim, Do-Hee;Kim, Han-Bit;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.20 no.2
    • /
    • pp.166-172
    • /
    • 2013
  • The effect of phytoncide solution treatment on the browning and quality of fresh-cut iceberg lettuce during storage was studied. The treatments were applied as four solutions adjusted at $10^{\circ}C$: distilled water (DW) as the control; edible ethanol (EE); 1% (v/v) phytoncide essential oil from pine needle diluted with distilled water (DP); and 1% (v/v) phytoncide essential oil diluted with edible ethanol (EP). Fresh-cut lettuce was dipped in each solution for 60 sec, was rinsed with distilled water, was packaged with an OPP film bag, and was then stored at $4^{\circ}C$ for 12 days. The EP group had a significantly high level of total soluble solids, titratable acidity, and carbon dioxide, and low total bacteria counts, pH, and oxygen. The sensory score of color in the EP group recorded a high value, but the EE and EP groups recorded low scores in aroma and taste during the storage period. Alcohol and phytoncide were vaporized by opening the package for two hours, and the score of the aroma and taste of EP showed no differences from those of the other groups. Based on the above results, it was determined that the phytoncide essential oil diluted in edible alcohol with 1% solution inhibited the browning of and microbial growth in fresh-cut lettuce, and will be a useful natural compound in maintaining the quality of fresh-cut produce.

AN ELECTROCHEMICAL STUDY ON THE CORROSION RESISTANCE OF THE VARIOUS IMPLANT METALS (수종 임플랜트 금속의 내식성에 관한 전기화학적 연구)

  • Jeon Jin-Young;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.423-446
    • /
    • 1993
  • Titanium and its alloys are finding increasing use in medical devices and dental implants. The strong selling point of titanium is its resistance to the highly corrosive body fluids in which an implant must survive. This corrosion resistance is due to a tenacious passive oxide or film which exists on the metal's surface and renders it passive. Potentiodynamic polarization measurement is one of the most commonly used electro-chemical methods that have been applied to measure corrosion rates. And the potentiodynamic polarization test supplies detailed information such as open circuit, rupture, and passivation potential. Furthermore, it indicates the passive range and sensitivity to pitting corrosion. This study was designed to compare the corrosion resistance of the commonly used dental implant materials such as CP Ti, Ti-6A1-4V, Co-Cr-Mo alloy, and 316L stainless steel. And the effects of galvanic couples between titanium and the dental alloys were assessed for their useful-ness-as. materials for superstructure. The working electrode is the specimen , the reference electrode is a saturated calomel electrode (SCE), and the counter electrode is made of carbon. In $N_2-saturated$ 0.9% NaCl solutions, the potential scanning was performed starting from -800mV (SCE) and the scan rate was 1 mV/sec. At least three different polarization measurements were carried out for each material on separate specimen. The galvanic corrosion measurements were conducted in the zero-shunt ammeter with an implant supraconstruction surface ratio of 1:1. The contact current density was recorded over a 24-hour period. The results were as follows : 1. In potential-time curve, all specimens became increasingly more noble after immersion in the test solution and reached between -70mV and 50mV (SCE) respectively after 12 hours. 2. The Ti and Ti alloy in the saline solution were most resistant to corrosion. They showed the typical passive behavior which was exhibited over the entire experimental range. Therefore no breakdown potentials were observed. 3. Comparing the rupture potentials, Ti and Ti alloy had the high(:st value (because their break-down potentials were not observed in this study potential range ) followed by Co-Cr-Mo alloy and stainless steel (316L). So , the corrosion resistance of titanium was cecellent, Co-Cr-Mo alloy slightly inferior and stainless steel (316L) much less. 4. The contact current density sinks faster than any other galvanic couple in the case of Ti/gold alloy. 5. Ag-Pd alloy coupled with Ti yielded high current density in the early stage. Furthermore, Ti became anodic. 6. Ti/Ni-Cr alloy showed a relatively high galvanic current and a tendency to increase.

  • PDF

Effect of Active Master Packaging System on Preservation of Fresh Shiitake Mushrooms in Supply Chain (유통과정에서 생표고버섯에 대한 Active 마스터 포장 시스템의 적용 효과)

  • An, Duck Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.3
    • /
    • pp.402-408
    • /
    • 2016
  • Master packaging system consists of an inner individual package and secondary outer package. During the stages of chilled transport and distribution, the combination of primary individual package and secondary package was used to maintain a modified atmosphere for shiitake mushrooms. During the retail stage at higher temperature ($25^{\circ}C$), the primary individual package was exposed to display conditions after dismantling of the secondary packaging. The master packaging system was constructed to contain eight individual $30-{\mu}m$ thick polypropylene film bags of 500 g shiitake mushrooms inside a $40-{\mu}m$ low-density polyethylene bag. Carbon dioxide absorbent material [$Ca(OH)_2$] and/or moisture absorbent (superabsorbent polymer) were designed in their required amounts based on respiration characteristics and then applied to the outer secondary packaging in sachet form. Gas concentration of the packaging, temperature, and humidity were monitored throughout transport and storage. The quality of shiitake mushrooms was measured at the retail stage to determine the packaging effect. During the distribution stage of 108 h, $O_2$ and $CO_2$ concentrations in the master packaging system were maintained at 9~11% and 1~4% in the inner packaging, respectively, which are good for quality preservation. Compared to the control, the master packaging with $CO_2$ and/or moisture absorbents improved mushroom preservation and particularly reduced decay.

Development of a Silicon Carbide Large-aperture Optical Telescope for a Satellite (SiC를 이용한 대구경 위성용 망원경 제작)

  • Bae, Jong In;Lee, Haeng Bok;Kim, Jeong Won;Lee, Kyung Mook;Kim, Myung-Whun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.2
    • /
    • pp.74-83
    • /
    • 2022
  • The entire process, from the raw material to the final system qualification test, has been developed to fabricate a large-diameter, lightweight reflective-telescope system for a satellite observation. The telescope with 3 anastigmatic mirrors has an aperture of 700 mm and a total mass of 66 kg. We baked a silicon carbide substrate body from a carbon preform using a reaction sintering method, and tested the structural and chemical properties, surface conditions, and crystal structure of the body. We developed the polishing and coating methods considering the mechanical and chemical properties of the silicon carbide (SiC) body, and we utilized a chemical-vapor-deposition method to deposit a dense SiC thin film more than 170 ㎛ thick on the mirror's surface, to preserve a highly reflective surface with excellent optical performance. After we made the SiC mirrors, we measured the wave-front error for various optical fields by assembling and aligning three mirrors and support structures. We conducted major space-environment tests for the components and final assembly by temperature-cycling tests and vibration-shock tests, in accordance with the qualifications for the space and launch environment. We confirmed that the final telescope achieves all of the target performance criteria.

Covalent Organic Framework Based Composite Separation Membrane: A Review (공유 유기 골격체 기반 복합 분리막 : 고찰)

  • Jeong Hwan Shim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.149-157
    • /
    • 2023
  • Covalent organic frameworks (COFs) have shown promise in various applications, including molecular separation, dye separation, gas separation, filtration, and desalination. Integrating COFs into membranes enhances permeability, selectivity, and stability, improving separation processes. Combining COFs with single-walled carbon nanotubes (SWCNT) creates nanocomposite membranes with high permeability and stability, ideal for dye separation. Incorporating COFs into polyamide (PA) membranes improves permeability and selectivity through a synthetic interfacial strategy. Three-dimensional COF fillers in mixed-matrix membranes (MMMs) enhance CO2/CH4 separation, making them suitable for biogas upgrading. All-nanoporous composite (ANC) membranes, which combine COFs and metal-organic framework (MOF) membranes, overcome permeance-selectivity trade-offs, significantly improving gas permeance. Computational simulations using hypothetical COFs (hypoCOFs) demonstrate superior CO2 selectivity and working capacity relevant for CO2 separation and H2 purification. COFs integrated into thin-film composite (TFC) and polysulfonamide (PSA) membranes enhance rejection performance for organic contaminants, salt contaminants, and heavy metal ions, improving separation capabilities. TpPa-SO3H/PAN covalent organic framework membranes (COFMs) exhibited superior desalination performance compared to traditional polyamide membranes by utilizing charged groups to enable efficient desalination through electrostatic repulsion, suggesting their potential for ionic and molecular separations. These findings highlight COFs' potential in membrane technology for enhanced separation processes by improving permeability, selectivity, and stability. In this review, COF applied for the separation process is discussed.

Effect of Chlorine Dioxide, Cold Plasma Gas Sterilization and MAP Treatment on the Quality and Microbiological Changes of Paprika During Storage (이산화염소 및 저온 플라즈마 가스 살균 및 MAP 처리가 파프리카의 저장 중 품질과 미생물학적 변화에 미치는 영향)

  • In-Lee, Choi;Joo Hwan, Lee;Yong Beom, Kwon;Yoo Han, Roh;Ho-Min, Kang
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.223-229
    • /
    • 2022
  • This study was conducted to investigate the effect of packaging methods and sterilization treatment on storability and microbial control in paprika fruits. When treated with chlorine dioxide gas for 3, 6, and 12 hours and cold plasma gas for 1, 3, and 6 hours, and then packed in a carton box and stored in a 8 ± 1℃ chamber for 7 days, chlorine dioxide treated 12 hours and plasma treated 6 hours was prevented the development of E·coli and YM(yeast and mold). Accordingly, the control was treated with chlorine dioxide for 12 hours and plasma for 6 hours, packed using a carton box and 40,000 cc·m-2·day-1·atm-1 OTR film (MAP), and stored in a 8 ± 1℃ chamber for 20 days. Fresh weight loss rate during storage was less than 1% in the MAP treatments, and the visual quality of the MAP treatments was above the marketability limit until the end of storage. There was no difference in the contents of oxygen, carbon dioxide, and ethylene in the film. In the case of firmness, the chlorine dioxide treatments was low, and the Hunter a* value, which showed chromaticity, was highest in the Plasma 6h MAP treatment. Off-odor was investigated in the MAP treatments, but it was very low. The rate of mold growth on the fruit stalk of paprika was the fastest and highest in the chlorine dioxide treated box packaging treatments, and the lowest in the chlorine dioxide treated MAP treatments at the end of storage. The aerobic count in the pulp on the storage end date was the lowest in the plasma treated box packaging treatments, the lowest number of E·coli in the chlorine dioxide treated MAP treatments, and the lowest yeast & mold in the chlorine dioxide treated box packaging treatments. As a result, for the inhibition of microorganisms during paprika storage, it is considered appropriate to treat plasma for 6 hours before storage regardless of the packaging method.