• Title/Summary/Keyword: Carbon fiber reinforced polymer (CFRP)

Search Result 260, Processing Time 0.022 seconds

The Interfacial Stresses in Concrete Beam Strengthened with Carbon Fiber Sheets due to Temperature Rising (온도상승에 따른 탄소섬유시트 보강 콘크리트보의 계면응력)

  • Choi, Hyoung-Suk;Kim, Seong-Do;Cheung, Jin-Whan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.109-118
    • /
    • 2008
  • Carbon fiber reinforced polymer(CFRP) can be bonded to the soffit of a concrete beam as a means of repairing and strengthening the beam. In such beams, materials, concrete and carbon fiber sheets, are different in coefficient of thermal expansion. Consequently, interfacial shear stresses can be increased and debonding failure may occur at the plate ends due to temperature rising. This paper presents a method of approximate closed-form solutions for the interfacial shear stresses and conducts a beam test to compare the numerical results. In case of temperature rising over $30^{\circ}C$, interfacial stress of 0.91MPa is occurred at the end of sheet. Therefore, using carbon fiber sheet for strengthening the concrete beam, it is necessary to consider the thermal effects and to evaluate the long time behavior of the concrete beam by temperature change.

A data mining approach to compressive strength of CFRP-confined concrete cylinders

  • Mousavi, S.M.;Alavi, A.H.;Gandomi, A.H.;Esmaeili, M. Arab;Gandomi, M.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.759-783
    • /
    • 2010
  • In this paper, compressive strength of carbon fiber reinforced polymer (CFRP) confined concrete cylinders is formulated using a hybrid method coupling genetic programming (GP) and simulated annealing (SA), called GP/SA, and a robust variant of GP, namely multi expression programming (MEP). Straightforward GP/SA and MEP-based prediction equations are derived for the compressive strength of CFRP-wrapped concrete cylinders. The models are constructed using two sets of predictor variables. The first set comprises diameter of concrete cylinder, unconfined concrete strength, tensile strength of CFRP laminate, and total thickness of CFRP layer. The most widely used parameters of unconfined concrete strength and ultimate confinement pressure are included in the second set. The models are developed based on the experimental results obtained from the literature. To verify the applicability of the proposed models, they are employed to estimate the compressive strength of parts of test results that were not included in the modeling process. A sensitivity analysis is carried out to determine the contributions of the parameters affecting the compressive strength. For more verification, a parametric study is carried out and the trends of the results are confirmed via some previous studies. The GP/SA and MEP models are able to predict the ultimate compressive strength with an acceptable level of accuracy. The proposed models perform superior than several CFRP confinement models found in the literature. The derived models are particularly valuable for pre-design purposes.

Analytical Evaluations of the Retrofit Performances of Concrete Wall Structures Subjected to Blast Load (폭발하중을 받는 콘크리트 벽체 구조물의 보강 성능에 대한 해석적 분석)

  • Kim, Ho-Jin;Nam, Jin-Won;Kim, Sung-Bae;Kim, Jang-Ho;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.241-250
    • /
    • 2007
  • In case of retrofitting a concrete structure subjected to blast load by using retrofit materials such as FRP (fiber-reinforced polymer), appropriate ductility as well as raising stiffness must be obtained. But the previous approximate and simplified models, which have been generally used in the design and analysis of structures subjected to blast load, cannot accurately consider effects on retrofit materials. Problems on the accuracy and reliability of analysis results have also been pointed out. In addition, as the response of concrete and reinforcement on dynamic load is different from that on static load, it is not appropriate to use material properties defined in the previous static or quasi-static conditions to in calculating the response on the blast load. In this study, therefore, an accurate HFPB (high fidelity physics based) finite element analysis technique, which includes material models considering strength increase, and strain rate effect on blast load with very fast loading velocity, has been suggested using LS-DYNA, an explicit analysis program. Through the suggested analysis technique, the behavior on the blast load of retrofitted concrete walls using CFRP (carbon fiber-reinforced polymer) and GFRP (glass fiber-reinforced polymer) have been analyzed, and the retrofit capacity analysis has also been carried out by comparing with the analysis results of a wall without retrofit. As a result of the analysis, the retrofit capacity showing an approximate $26{\sim}28%$ reduction of maximum deflection, according to the retrofit, was confirmed, and it is judged ate suggested analysis technique can be effectively applicable in evaluating effectiveness of retrofit materials and techniques.

Advances on the Behavior Characterization of FRP-Anchored Carbon Fiber-Reinforced Polymer (CFRP) Sheets Used to Strengthen Concrete Elements

  • Brena, Sergio F.;McGuirk, Geoffrey N.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.3-16
    • /
    • 2013
  • Strengthening concrete structures using FRP composites is a commonly considered technology in many practical situations. The success of the strengthening intervention largely depends on adequate bond between FRP sheets and the concrete substrate. In recent years, techniques to anchor FRP sheets in applications where sheets must develop strength in a short length have been proposed. One of these techniques includes use of FRP anchors embedded into the concrete substrate and forming part of the composite strengthening system. This paper presents the results of studies conducted recently at the University of Massachusetts Amherst to advance the understanding on the behavior of FRP anchored systems.

Detection and Quantification of Defects in Composite Material by Using Thermal Wave Method

  • Ranjit, Shrestha;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.6
    • /
    • pp.398-406
    • /
    • 2015
  • This paper explored the results of experimental investigation on carbon fiber reinforced polymer (CFRP) composite sample with thermal wave technique. The thermal wave technique combines the advantages of both conventional thermal wave measurement and thermography using a commercial Infrared camera. The sample comprises the artificial inclusions of foreign material to simulate defects of different shape and size at different depths. Lock-in thermography is employed for the detection of defects. The temperature field of the front surface of sample was observed and analysed at several excitation frequencies ranging from 0.562 Hz down to 0.032 Hz. Four-point methodology was applied to extract the amplitude and phase of thermal wave's harmonic component. The phase images are analyzed to find qualitative and quantitative information about the defects.

Review of Radio Frequency Identification and Wireless Technology for Structural Health Monitoring

  • Dhital, Dipesh;Chia, Chen Ciang;Lee, Jung-Ryul;Park, Chan-Yik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.244-256
    • /
    • 2010
  • Radio frequency identification(RFID) combined with wireless technology has good potential for structural health monitoring(SHM). We describe several advantages of RFID and wireless technologies for SHM, and review SHM examples with working principles, design and technical details for damage detection, heat exposure monitoring, force/strain sensing, and corrosion detection in concrete, steel, carbon fiber reinforced polymer(CFRP), and other materials. Various sensors combined with wireless communication are also discussed. These methodologies can be readily developed, implemented, and customized. There are some technical difficulties, but solutions are being addressed. Lastly, a surface acoustic wave-based RFID system is presented, and possible future trends of SHM based on RFID and wireless technology are presented.

Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques

  • Kankeri, Pradeep;Prakash, S. Suriya;Pachalla, Sameer Kumar Sarma
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.535-546
    • /
    • 2018
  • The objective of this study is to understand the behaviour of hollow core slabs strengthened with FRP and hybrid techniques through numerical and analytical studies. Different strengthening techniques considered in this study are (i) External Bonding (EB) of Carbon Fiber Reinforced Polymer (CFRP) laminates, (ii) Near Surface Mounting (NSM) of CFRP laminates, (iii) Bonded Overlay (BO) using concrete layer, and (iv) hybrid strengthening which is a combination of bonded overlay and NSM or EB. In the numerical studies, three-dimensional Finite Element (FE) models of hollow core slabs were developed considering material and geometrical nonlinearities, and a phased nonlinear analysis was carried out. The analytical calculations were carried out using Response-2000 program which is based on Modified Compression Field Theory (MCFT). Both the numerical and analytical models predicted the behaviour in agreement with experimental results. Parametric studies indicated that increase in the bonded overlay thickness increases the peak load capacity without reducing the displacement ductility. The increase in FRP strengthening ratio increased the capacity but reduced the displacement ductility. The hybrid strengthening technique was found to increase the capacity of the hollow core slabs by more than 100% without compromise in ductility when compared to their individual strengthening schemes.

Axial behavior of FRP-wrapped circular ultra-high performance concrete specimens

  • Guler, Soner
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.709-722
    • /
    • 2014
  • Ultra-High Performance Concrete (UHPC) is an innovative new material that, in comparison to conventional concretes, has high compressive strength and excellent ductility properties achieved through the addition of randomly dispersed short fibers to the concrete mix. This study presents the results of an experimental investigation on the behavior of axially loaded UHPC short circular columns wrapped with Carbon-FRP (CFRP), Glass-FRP (GFRP), and Aramid-FRP (AFRP) sheets. Six plain and 36 different types of FRP-wrapped UHPC columns with a diameter of 100 mm and a length of 200 mm were tested under monotonic axial compression. To predict the ultimate strength of the FRP-wrapped UHPC columns, a simple confinement model is presented and compared with four selected confinement models from the literature that have been developed for low and normal strength concrete columns. The results show that the FRP sheets can significantly enhance the ultimate strength and strain capacity of the UHPC columns. The average greatest increase in the ultimate strength and strain for the CFRP- and GFRP-wrapped UHPC columns was 48% and 128%, respectively, compared to that of their unconfined counterparts. All the selected confinement models overestimated the ultimate strength of the FRP-wrapped UHPC columns.

Effect of Nitrogen Gas Pressure on the Mechanical Properties of Polymer Composite Materials (고분자 복합재료의 기계적 물성에 미치는 질소기압의 영향)

  • Kim, Bu-An;Hwang, Hyun-Young;Kang, Suk-Jun;Moon, Chang-Kwon
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.14-19
    • /
    • 2016
  • This study is about the effect of nitrogen gas pressures during manufacturing process on the mechanical properties of composite materials. $TiO_2$/epoxy resin nanocomposites and carbon fiber reinforced epoxy resin(CFRP) composites were fabricated under various nitrogen gas pressures. Tensile strength test, vicker's hardness test and fracture surface observation were carried out to investigate the effect of nitrogen gas pressure. As a result, the tensile strength of nanocomposite and CFRP composites showed clearly increasing tendency by a change in the nitrogen gas pressure up to 3.0 atm and then the tensile strength decreased a little. However, the vicker's hardness of $TiO_2$/epoxy nanocomposites showed same hardness values regardless of the nitrogen gas pressures.

High-cycle fatigue characteristics of quasi-isotropic CFRP laminates

  • Hosoi, Atsushi;Arao, Yoshihiko;Karasawa, Hirokazu;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.151-166
    • /
    • 2007
  • High-cycle fatigue characteristics of quasi-isotropic carbon fiber reinforced plastic (CFRP) laminates [-45/0/45/90]s up to $10^8$ cycles were investigated. To assess the fatigue behavior in the high-cycle region, fatigue tests were conducted at a frequency of 100 Hz, since it is difficult to investigate the fatigue characteristics in high-cycle at 5 Hz. Then, the damage behavior of the specimen was observed with a microscope, soft X-ray photography and a 3D ultrasonic inspection system. In this study, to evaluate quantitative characteristics of both transverse crack propagation and delamination growth in the high-cycle region, the energy release rate associated with damage growth in the width direction was calculated. Transverse crack propagation and delamination growth in the width direction were evaluated based on a modified Paris law approach. The results revealed that transverse crack propagation delayed under the test conditions of less than ${\sigma}_{max}/{\sigma}_b$ = 0.3 of the applied stress level.