• Title/Summary/Keyword: Carbon fiber reinforced epoxy composites

Search Result 159, Processing Time 0.02 seconds

Influence of Angle Ply Orientation on the Flexural Strength of Basalt and Carbon Fiber Reinforced Hybrid Composites

  • Mengal, Ali Nawaz;Karuppanan, Saravanan
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • In this paper the influence of fiber orientation of basalt and carbon inter-ply fabrics on the flexural properties of hybrid composite laminates was experimentally investigated. Four types of basalt/carbon/epoxy inter-ply hybrid composite laminates with varying angle ply orientation of reinforced basalt fiber and fixed orientation of carbon fiber were fabricated using hand lay-up technique. Three point bending test was performed according to ASTM 7264. The fracture surface analysis was carried out by scanning electron microscope (SEM). The results obtained from the four laminates were compared. Lay-up pattern of $[0B/+30B/-30B/0C]_S$ exhibits the best properties in terms of flexural strength and flexural modulus. Scanning electron microscopy results on the fracture surface showed that the interfacial de-bonding between the fibers and epoxy resin is a dominant fracture mode for all fiber lay-up schemes.

Shielding Effectiveness of Electromagnetic Interference in ABS/Nickel Coated Carbon Fiber and Epoxy/Cu-Ni Fabric Nano Carbon Black Composites (ABS/Nickel 코팅 탄소섬유와 Epoxy/Copper-Nickel 직조 섬유 복합재료의 전자파차폐 효과)

  • Han, Gil-Young;Jung, Woo-Chul;Yang, In-Young;Sun, Hyang-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.169-174
    • /
    • 2012
  • Electromagnetic interference(EMI) shielding effectiveness(SE) was investigated in of woven fabric made of epoxy/copper-nickel fabrics and nickel coated carbon fiber reinforced acrylonitrile-butadiene-styrene(ABS) composites. The coaxial transmission line method was used to measure the EMI shielding effectiveness of the composites. We designed and constructed a measuring system, consisting of a network analyzer and a device that plays the serves as a sample holder and at the same time as a transmission medium of the incident electromagnetic wave. The measurement of SE were carried out frequency range from 100MHz to 2GHz. It is observed that the SE of the composits is the frequency dependent increase with the increase in nickel coated carbon fibre volume fraction. The nickel coating with 20wt% ABS composite was shown to exhibit up to 60dB of SE. The result that nickel coated carbon fibre ABS composite can be used for the purpose of EMI shielding as well as for some microwave applications.

Interlaminar Shear Strength of Carbon Fiber Epoxy Composite with Nickel Film (니켈 박막 첨가에 따른 탄소섬유 에폭시 복합재료의 층간 계면 특성)

  • Lee, Min-Kyung
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.94-98
    • /
    • 2015
  • This paper reports the effects of nickel film interleaves on the interlaminar shear strength(ILSS) of carbon fiber reinforced epoxy composites(CFRPs). A nickel thin film was deposited onto the prepreg by radio frequency(RF) sputtering at room temperature. The ILSS of the nickel film interleaved hybrid composites was increased compared to that of the composites without interleaves. To understand the mechanism of enhancement of the ILSS, the fracture surface of the tested specimens was examined by scanning electron microscopy(SEM). The metal interleaves were acted as a reinforcement for the matrix rich interface and the shear property of their composites improved by enhancing the resistance to matrix cracking.

Interfacial Sensing and Evaluation of Carbon and SiC Fibers/Epoxy Composites with Different Embedding Angle using Electro-Micromechanical Technique (Electro-Micromechanical Technique을 이용한 각의 변화에 따른 Carbon과 SiC Fiber/Epoxy Composites의 계면감지능 및 평가)

  • Lee, Sang-Il;Kong, Jin-Woo;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.199-202
    • /
    • 2002
  • Interfacial properties and electrical sensing for fiber fracture in carbon and SiC fibers/epoxy composites were investigated by the electrical resistance measurement and fragmentation test. As fiber-embedded angle increased, interfacial shear strength (IFSS) of two-type fiber composites decreased, and the elapsed time was long to the infinity in electrical resistivity. The initial slope of electrical resistivity increased rapidly to the infinity at higher angle, whereas electrical resistivity increased gradually at small angle. Furthermore, both fiber composites with small embedded angle showed a fully-developed stress whitening pattern, whereas both composites with higher embedded angle exhibited a less developed stress whitening pattern. As embedded angle decreased, the gap between the fragments increased and the debonded length was wider for both fiber composites. Electro-micromechanical technique can be a feasible nondestructive evaluation to measure interfacial sensing properties depending on the fiber-embedded angle in conductive fiber reinforced composites.

  • PDF

Tribological Characteristics of Carbon Fiber Reinforced Plastics by Surface modification (탄소섬유복합재의 표면개질에 따른 트라이볼로지 특성에 관한 연구)

  • 전승흥;양준호;오성모;이봉구
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.29-36
    • /
    • 2000
  • This investigation has been studied about friction and wear properties which were important problem, when carbon fiber reinforced plastic(CFRP) was used practically. Unidirection carbon fiber reinforced composites was fabricated with epoxy resin matrix and carbon fiber as a reinforced, and its surface was modified by the ion-assisted reaction. And then we tested the their friction and wear properties according to the ion-irradiation. when the amount of ion-irradiation was 1${\times}$10l6$\^$16/ ions/$\textrm{cm}^2$, the friction coefficient values were about 0.1, where as, the friction coefficient values of non-treatment composites were about 0.16. The former was the stablest in wear mode. We know that ion-irradiation was not proportioned to the friction coefficient, so we found the optimal conditions of the friction and wear according to the ion-irradiation.

  • PDF

A Study on Electromagnetic Interference Shielding Effectiveness of the Metal Powders and Nano Carbon black /Fiber Reinforced Epoxy composites (메탈 파우더와 나노 카본 블랙/섬유강화 복합재료의 전자파 차폐효과에 관한 연구)

  • Han Gil-Young;Kim Jin-Seok;Ahn Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.100-107
    • /
    • 2006
  • The objective of this research is to investigate the electromagnetic interference(EMI) shielding characteristics of fiber reinforced composites. We fabricated glass and carbon fiber reinforced composites filled with metal powder and nano carbon black. The measurements of shielding effectiveness(SE) were carried out frequency range 300MHz - 1GHz for commercial purposes such as electric or telecommunication devices. The return loss and loss due to absorption were also measured as a function of frequency in the micro wave(300MHz-1GHz) region. It is observed that the SE of the composites is the frequency dependent, increase with the increases in filler loading. The Mg metal powder filled composite showed higher SE compared to that of carbon black. The Mg metal powder/epoxy composite was shown to exhibit up to 40dB of SE. The results indicates that the composite having higher filler loading can be used for the purpose of EMI shielding as well as for some microwave applications.

Processing - Interlaminar Shear Strength Relationship of Carbon Fiber Composites Reinforced with Carbon Nanotubes (탄소나노튜브로 보강된 탄소섬유복합재의 제조공정과 층간전단강도)

  • Kim, Han-Sang
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.34-38
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been widely investigated as reinforcements of CNT/polymer nanocomposites to enhance mechanical and electrical properties of polymer matrices since their discovery in the early 90's. Furthermore, the number of studies about incorporating CNTs into carbon fiber reinforced plastics (CFRP) to reinforce their polymer matrices is increasing recently. In this study, single-walled carbon nanotubes (SWNT) were dispersed in epoxy with 0.2 wt.% and 0.5 wt.%. Then, the SWNT/epoxy mixtures were processed to carbon fiber composites by a vacuum assisted resin transfer molding (VARTM) and a wet lay up method. The processed composite samples were tested for the interlaminar shear strength (ILSS). The relationship between the interlaminar shear strengths and processing, and the reinforcement mechanism of carbon nanotubes were investigated. CNT/epoxy nanocomposite specimens showed the increased tensile properties. However, the ILSS of carbon fiber composites was not enhanced by reinforcing the matrix with CNTs because of processing issues caused by increased viscosity of the matrix due to addition of CNTs particularly for a VARTM method.

Effect of Fiber Orientation on the Friction and Wear Properties of Epoxy-based Composites (섬유 방향에 따른 에폭시 기반 복합재의 마찰 및 마모 특성에 관한 연구)

  • An, Hyo-Seong;Khadem, Mahdi;Chun, Heoung-Jae;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.133-138
    • /
    • 2020
  • In this paper, we present an experimental investigation of the friction coefficient and wear area change of carbon/epoxy and E-glass/epoxy composites depending on the fiber direction (0°/90°). We compared the results of the case where the sliding direction is parallel to the fiber direction (0°) with that of the case where it is perpendicular to the fiber direction (90°). The ball-on-plate wear test equipment was used to cause wear in both directions. Two types of specimens were prepared with thicknesses of 3 mm-one made of carbon fiber reinforced plastic composite (CFRP) and the other of glass fiber reinforced plastic composite (GFRP). A normal force of 20 N was applied to the specimen and the sliding speed was 10 mm/s and the sliding distance was set to 20 m to perform the wear test. The CFRP demonstrates superior tribological characteristics compared to the GFRP. This outcome is attributed to graphitization of carbon, which serves as solid lubricating particles. In addition, both CFRP and GFRP are worn more in the 90° direction than in the 0° direction. This is due to the greater occurrence of fiber breakage and separation in the 90° direction than in the 0° direction. This study is expected to be utilized as basic data for understanding the friction and wear characteristics of CFRP and GFRP composites along the fiber direction and to apply the appropriate material.

A Study on Electromagnetic Interference Shielding Effectiveness of the Aluminum film, Conductive Fabric and Nano Carbon black/Carbon Fiber Reinforced Composites (알루미늄 필름, 전도성 직조섬유/나노 카본블랙 탄소섬유복합재료의 전자파 차폐효과에 관한 연구)

  • Han, Gil-Young;Song, Dong-Han;Bae, Ji-Soo;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.10-16
    • /
    • 2008
  • This study investigated electromagnetic interference(EMI) shielding effectiveness(SE) of the aluminum film, conductive fabric and nano carbon black carbon fiber reinforced composites. We fabricated carbon fiber reinforced composites filled with nano carbon black where they bonded aluminum film and conductive fabric. The measurements of SE were carried out frequency range from 300MHz to 1.5GHz. It is observed that the SE of the bonded aluminum film and conductive fabric composites is the frequency dependent, increase with the increase in filler nano carbon black content. The aluminum film bonded composites showed higher SE compared to that of carbon black and conductive fabric. The aluminum film bonded epoxy composite was shown to exhibit up to 80dB of SE. The result that aluminum film bonded composite can be used for the purpose of EMI shielding as well as for some microwave applications.

  • PDF

Effect of Various Sizing Agents on the Properties of Nylon6/Carbon Fiber Composites Prepared by Reactive Process (다양한 사이징제가 반응중합에 의해 제조된 나일론 6/탄소섬유 복합체의 물성에 미치는 영향)

  • Park, Ha-Neul;Lee, Hak Sung;Huh, Mongyoung
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.299-303
    • /
    • 2018
  • In order to improve the interfacial bonding force and reaction polymerization degree of the carbon fiber reinforced nylon 6 composite material, the surface of the existing epoxy-sizing carbon fiber was desized to remove the epoxy and treated with urethane, nylon and phenoxy sizing agent, was observed. The interfacial bond strength of the resized carbon fiber was confirmed by IFSS (Interfacial Shear Strength) and the fracture surface was observed by scanning electron microscope. The results showed that the interfacial bonding strength of the carbon fiber treated with nylon and phenoxy sizing agents was higher than that of urethane - based sizing. It has been found that the urethane - type resizing carbon fiber has lower interfacial bonding strength than the conventional epoxy - sizing carbon fiber. This result shows that the interfacial bonding between carbon fiber and nylon 6 is improved by removing low activity and smoothness of existing carbon fiber.