• 제목/요약/키워드: Carbon fiber precursor

검색결과 78건 처리시간 0.038초

핏치계 탄소섬유 제조에 있어서 산화공정이 물성에 미치는 영향 (Study of the Influence of Oxidation Treatment on the Pitch Based Carbon Fiber Properties)

  • 김홍;성하진;권영배
    • 한국기계연구소 소보
    • /
    • 통권15호
    • /
    • pp.57-66
    • /
    • 1985
  • Fibers with a high degree of axial preferred orientation can be obtained from mesophase pitch. Prior to cabonization, the pitch fibers must be rendered in fusible so that their orientation is preserved. The stabilization of the pitch fibers was heated at temperature between $250^{circ}C$ and $300^{circ}C$ and a treatment time 5 to 80minutes. Oxidized fibers heated $1800^{circ}C$without stretching. Pitch based carbon fiber have a young's modulus as high as 304GN/$m^2$. The structure of the pitch cased carbon fiber is determining factor for the mechanical properties of the produced fibers. The structure depending on the pitch precursor as well as on the oxidation time.

  • PDF

탄소섬유용 프리커서 피치를 제조하기 위한 나프타 분해 잔사유의 개질 (Reformation of Naphtha Cracking Bottom Oil for the Preparation of Carbon Fiber Precursor Pitch)

  • 김명철;엄상용;유승곤
    • Korean Chemical Engineering Research
    • /
    • 제43권6호
    • /
    • pp.745-750
    • /
    • 2005
  • 등방성 피치계 탄소섬유 및 활성탄소섬유를 얻기 위한 프리커서 피치를 제조하기 위하여 NCB(naphtha cracking bottoms) oil을 열처리온도, 처리시간, 질소유량을 변화시키면서 개질하였다. 개질된 피치의 수율, 연화점, 원소분석, 분자량분포를 측정하고 용융방사하여 최적의 개질조건을 얻었다. 질소유량 1.25 vvm, 열처리온도 $380^{\circ}C$, 처리시간 3 h 일 때 약 $240^{\circ}C$의 연화점을 갖는 방사성이 우수한 프리커서 피치를 제조할 수 있었다. 이때의 수율은 약 21 wt%, C/H 몰비는 1.07에서 1.34로, 방향족화도는 0.85에서 0.88으로 증가하였고, 벤젠 및 퀴놀린 불용분은 각각 30.0 wt%, 1.5 wt% 이었다, 방사 온도는 프리커서 피치의 연화점보다 약 $50^{\circ}C$ 높았으며 분자량은 250~1,250 범위에 분포되어 있지만 80% 이상은 250~700의 좁은 범위에 몰려있었다.

Effect of Inherent Anatomy of Plant Fibers on the Morphology of Carbon Synthesized from Them and Their Hydrogen Absorption Capacity

  • Sharon, Madhuri;Sharon, Maheshwar
    • Carbon letters
    • /
    • 제13권3호
    • /
    • pp.161-166
    • /
    • 2012
  • Carbon materials were synthesized by pyrolysis from fibers of Corn-straw (Zea mays), Rice-straw (Oryza sativa), Jute-straw (Corchorus capsularis) Bamboo (Bombax bambusa), Bagass (Saccharum officinarum), Cotton (Bombax malabaricum), and Coconut (Cocos nucifera); these materials were characterized by scanning electron microscope, X-ray diffraction (XRD), and Raman spectra. All carbon materials are micro sized with large pores or channel like morphology. The unique complex spongy, porous and channel like structure of Carbon shows a lot of similarity with the original anatomy of the plant fibers used as precursor. Waxy contents like tyloses and pits present on fiber tracheids that were seen in the inherent anatomy disappear after pyrolysis and only the carbon skeleton remained; XRD analysis shows that carbon shows the development of a (002) plane, with the exception of carbon obtained from bamboo, which shows a very crystalline character. Raman studies of all carbon materials showed the presence of G- and D-bands of almost equal intensities, suggesting the presence of graphitic carbon as well as a disordered graphitic structure. Carbon materials possessing lesser density, larger surface area, more graphitic with less of an $sp^3$ carbon contribution, and having pore sizes around $10{\mu}m$ favor hydrogen adsorption. Carbon materials synthesized from bagass meet these requirements most effectively, followed by cotton fiber, which was more effective than the carbon synthesized from the other plant fibers.

Mechanical and electrical properties of cement paste incorporated with pitch-based carbon fiber

  • Rhee, Inkyu;Kim, Jin Hee;Park, Sang Hee;Lee, Sungho;Ryu, Bong Ryeul;Kim, Yoong Ahm
    • Carbon letters
    • /
    • 제23권
    • /
    • pp.22-29
    • /
    • 2017
  • The compressive strength and electrical resistance of pitch-based carbon fiber (CF) in cementitious materials are explored to determine the feasibility of its use as a functional material in construction. The most widely used CFs are manufactured from polyacrylonitrile (PAN-based CF). Alternatively, short CFs are obtained in an economical way using pitch as a precursor in a melt-blown process (pitch-based CF), which is cheaper and more eco-friendly method because this pitch-based CF is basically recycled from petroleum residue. In the construction field, PAN-based CFs in the form of fabric are used for rehabilitation purposes to reinforce concrete slabs and piers because of their high mechanical properties. However, studies have revealed that construction materials with pitch-based CF are not popular. This study explores the compressive strength and electrical resistances of a cement paste prism using pitch-based CF.

Effect of Process Condition on Tensile Properties of Carbon Fiber

  • Lee, Sung-Ho;Kim, Ji-Hoon;Ku, Bon-Cheol;Kim, Jun-Kyong;Chung, Yong-Sik
    • Carbon letters
    • /
    • 제12권1호
    • /
    • pp.26-30
    • /
    • 2011
  • For polyacrylonitrile (PAN) based carbon fiber (CF) process, we developed a lab scale wet spinning line and a continuous tailor-made stabilization system with ten columns for controlling temperature profile. PAN precursor was spun with a different spinning rate. PAN spun fibers were stabilized with a total duration of 45 to 110 min at a given temperature profile. Furthermore, a stabilization temperature profile was varied with the last column temperature from 230 to $275^{\circ}C$. Stabilized fibers were carbonized in nitrogen atmosphere at $1200^{\circ}C$ in a furnace. Morphologies of spun and CFs were observed using optical and scanning electron microscopy, respectively. Tensile properties of resulting CFs were measured. The results revealed that process conditions such as spinning rate, stabilization time, and temperature profile affect microstructure and tensile properties of CFs significantly.

저가형 탄소섬유 개발을 위한 자외선 조사 기반 의류용 PAN 섬유의 연속식 안정화 공정 개발 (Developing Continuous Stabilization Process for Textile-Grade PAN Fiber-Based Carbon Fiber Using UV Irradiation)

  • 문준하;성홍규;유지선;조세연;최재원
    • 한국분말재료학회지
    • /
    • 제29권5호
    • /
    • pp.418-423
    • /
    • 2022
  • Carbon fibers (CFs) are considered promising composite materials for various applications. However, the high cost of CFs (as much as $26 per kg) limits their practical use in the automobile and energy industries. In this study, we developed a continuous stabilization process for manufacturing low-cost CFs. We employed a textile-grade polyacrylonitrile (PAN) fiber as a low-cost precursor and UV irradiation technique to shorten the thermal stabilization time. We confirmed that UV irradiation on the textile-grade PAN fibers could lower the initial thermal stabilization temperature and also lead to a higher reaction. These resulted in a shorter overall stabilization time and enhancement of the tensile properties of textile-grade PAN-based CFs. Our study found that only 70 min of stabilization time with UV irradiation was required to prepare textile-grade PAN-based low-cost CFs with a tensile strength of 2.37 ± 0.22 GPa and tensile modulus of 249 ± 5 GPa.

Pressure Effects on the Morphology Development of C/C Composites During Carbonization

  • Joo, Hyeok-Jong;Ryu, Seung-Hee;Ha, Hun-Seung
    • Carbon letters
    • /
    • 제1권3_4호
    • /
    • pp.158-164
    • /
    • 2001
  • It is well known that the fabrication process of carbon/carbon composites is very complex. Above all, the carbonization process have major effect on the morphology development of carbon matrix. Carbon/carbon composites of 4-directional fiber preform were fabricated using the coal tar based pitch as a matrix precursor in this study. According to carbonization pressure of 1 bar, 100 bar, 600 bar, and 900 bar, morphological changes of cokes and matrix of composites were discussed. As the carbonization pressure increased to 600 bar, the flow pattern morphology of bulk mesophse was well developed. On the contrary, mosaic pattern morphology was found in case of 900 bar of carbonization pressure. It is confirmed that the carbonization pressure have profound effect on the degree of graphitization and crystal size of carbon matrix. Even in the highly densified carbon/carbon composites, large voids were still found in the matrix pocket region.

  • PDF

Distribution of Deposited Carbon in Carbon Brake Disc Made by Pressure-Gradient Chemical Vapor Infiltration

  • Chen, Jianxun;Xiong, Xiang
    • Carbon letters
    • /
    • 제8권1호
    • /
    • pp.25-29
    • /
    • 2007
  • The carbon brake discs were manufactured by densification the carbon fiber preform using PG-CVI technology with Propene as a carbon precursor gas and Nitrogen as a carrier gas. The densities of carbon brake discs were tested at different densification time. The results indicate that the densification rate is more rapid before 100 hrs than after 200 hrs. The CTscanning image and the SEM technology were used to observe the inner subtle structure. CT-images show the density distribution in the carbon brake disc clearly. The carbon brake disk made by PG-CVI is not very uniform. There is a density gradient in the bulk. The high-density part in the carbon brake is really located in the friction surface, especially in the part of inner circle. This density distribution is most suitable for the stator disc.

Steam Activation Behaviors of Oxidatively Stabilized Petroleum-based Pitch Fibers Spun by Melt-blown Method

  • Kim, Chan;Kim, Young-Min;Yang, Kap-Seung
    • Carbon letters
    • /
    • 제3권2호
    • /
    • pp.93-98
    • /
    • 2002
  • Short pitch fibers were prepared from petroleum based isotropic precursor pitch by melt-blown technology. The pitch fibers were stabilized in oxidizing condition, followed by steam activations at various conditions. The fiber surface and pore structures of the activated carbon fibers (ACFs) were respectively characterized by using SEM and applying BET theory from nitrogen adsorption at 77 K. The weight loss of the oxidized fiber was proportional to activation temperature and activation time, independently. The adsorption isotherms of the nitrogen on the ACFs were constructed and analyzed to be as Type I consisting of micropores mainly. The specific surface area of the ACFs proportionally increased with the weight loss at a given activation temperature. The specific surface area was ranged 850~1900 $m^2/g$ with pores of narrow distribution in sizes. The average pore size was ranged 5.8~14.1 ${\AA}$ with the larger value from the more severe activation condition.

  • PDF

Influence of oxidative atmosphere of the electron beam irradiation on cyclization of PAN-based fibers

  • Shin, Hye Kyoung;Park, Mira;Kim, Hak-Yong;Park, Soo-Jin
    • Carbon letters
    • /
    • 제16권3호
    • /
    • pp.219-221
    • /
    • 2015
  • In order to study the impact of atmosphere during electron beam irradiation (EBI) of polyacrylonitrile (PAN) precursor fibers, the latter were stabilized by EBI in both air and oxygen atmospheres. Gel-fraction determination indicated that EBI-stabilization under an oxygen atmosphere leads to an enhanced cyclization in the PAN fibers. In the Fourier-transform infrared spectroscopy analysis, the PAN fibers stabilized by EBI under an oxygen atmosphere exhibited a greater decrease in the peak intensity at 2244 cm−1 (C≡N vibration) and a greater increase in the peak intensity at 1628 cm−1 (C=N absorption) than the corresponding PAN fibers stabilized under an air atmosphere. From the X-ray diffraction analysis it was found that oxygen uptake in PAN fibers leads to an increase in the amorphous region, produced by cyclization.