• Title/Summary/Keyword: Carbon fiber composite

Search Result 1,194, Processing Time 0.047 seconds

Electromagnetic Interference shielding effectiveness of carbon black / Glass fiber woven roving and Carbon fiber unidirectional fabric reinforced composite (카본블랙/섬유강화 복합재료의 전자파 차폐효과)

  • Kim J.S.;Han G.Y.;Ahn D.G.;Lee S.H.;Kim M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1322-1325
    • /
    • 2005
  • The main objectives of this research work are to develop conductive glass fiber woven roving and carbon fiber unidirectional fabric composite materials and to determine their electromagnetic shielding effectiveness(EMSE). Epoxy is the matrix phase and glass, carbon fiber are the reinforcement phase of the composite material. Carbon black are incorporated as conductive fillers to provide the electromagnetic shielding properties of the composite material. The amount of carbon black in the composite material is varied by changing the carbon black composition, woven roving and unidirectional (fabric) structure. The EMSE of various fabric composites is measured in the frequency range from 300MHz to 800MHz. The variations of EMSE of woven roving and unidirectional composites with fabric structure, metal powder composite are described. Suitability of conductive fabric composites for electromagnetic shielding applications is also discussed.

  • PDF

Permittivities of the Carbon Nano Fiber/Epoxy Composite According to the Dispersion Methods (분산 방법에 따른 카본 나노 섬유/에폭시 복합재료의 유전율)

  • 김태욱;김진봉;공진우;정재한;김준현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.55-58
    • /
    • 2003
  • This paper presents a study on the permittivities of the carbon nano fiber/epoxy composite at microwave frequency. The permittivities of composite materials depend on the concentrations and the dispersion methods of the carbon nano fibers. The experimental values of complex permittivities were obtained for the specimen made by dispersion method using ethyl alcohol as dispersion media and compared with the results by simple mechanical mixing method.

  • PDF

Interfacial Properties and Curing Behavior of Carbon Fiber/Epoxy Composites using Micromechanical Techniques and Electrical Resistivity Measurement (Micromechanical 시험법과 전기적 고유저항 측정을 이용한 탄소섬유강화복합재료의 계면 물성과 경화거동에 관한 연구)

  • 이상일;박종만
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.17-21
    • /
    • 2000
  • Logarithmic electrical resistivity of the untreated or thin diameter carbon fiber composite increased suddenly to the infinity when the fiber fracture occurred by tensile electro-micromechanical test, whereas that of the ED or thick fiber composite increased relatively broadly up to the infinity. Electrical resistance of single-carbon fiber composite increased suddenly due to electrical disconnection by the fiber fracture in tensile electro-micromechanical test, whereas that of SFC increased stepwise due to the occurrence of the partial electrical contact with increasing the buckling or overlapping in compressive test. Electrical resistivity measurement can be very useful technique to evaluate interfacial properties and to monitor curing behavior of single-carbon fiber/epoxy composite under tensile/compressive loading.

  • PDF

Cure Monitoring and Nondestructive Evaluation of Carbon Fiber/Epoxy Composites by the Measurements of Electrical Resistance and AE

  • Lee Sang-Il;Yoon Dong-Jin;Park Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.264-267
    • /
    • 2004
  • Cure monitoring and nondestructive characteristics of carbon fiber/epoxy composites were evaluated by the measurements of electrical resistance and acoustic emission (AE). Logarithmic electrical resistivity of the untreated single-carbon fiber composite increased suddenly to infinity when the fiber fracture occurred, whereas that of the electrodeposited composite increased relatively broadly up to infinity. As curing temperature increased. logarithmic electrical resistivity of steel fiber increased. On the other hand, electrical resistance of carbon fiber decreased due to the intrinsic electrical properties based on the band theory. The apparent modulus of the electrodeposited composite was higher than that of the untreated composite due to the improved interfacial shear strength (IFSS).

  • PDF

Strength Analysis of Rear Upright Laminated with Carbon Fiber Composite for Leisure Purposed Small Electric Car (카본섬유 복합재 라미네이트를 적용한 레저용 소형 전기차량의 후륜 업라이트의 구조강도 해석)

  • Jang, Woongeun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.273-280
    • /
    • 2019
  • Carbon fiber composite laminate has been widely used in the area of sports applications such as race car, golf club, fishing rods, yacht. In this study, carbon fiber composite laminate was used in the rear upright of leisure purposed small size single-seat electric race car to reduce its unsprung mass of suspension system. The focus of this research is to investigate in finding optimal stacking lay-up of rear upright laminated with carbon fiber composite in the early design phase. Forces transferred from circuit road to rear upright were estimated through MBD(Multi-Body Dynamics)model of the rear suspension geometry. To evaluate the strength of the rear upright laminated with carbon fiber composite which generally behaves in an anisotropic or orthotropic manner, FEA(Finite Element Analysis) model suitable for composite materials was built followed by its strength was evaluated depending on different stacking lay-up. The result showed that Symmetric stacking lay-up [$45^{\circ}/-45^{\circ}/90^{\circ}/0^{\circ}$]s for frontal area and symmetric stacking lay-up with 1mm aluminum core [$45^{\circ}/-45^{\circ}/90^{\circ}/Core$]s for rear area were most suitable of 16 lay-up cases from the side of both strength based on Tasi-wu failure index and weight.

Study on the Fabrication and the Properties of C/C Composite from Clutter Chopped Carbon Fiber by Warmer-Molding Technology

  • Chen, Jianxun;Huang, Qizhong
    • Carbon letters
    • /
    • v.7 no.4
    • /
    • pp.241-244
    • /
    • 2006
  • Carbon/Carbon composite was been manufactured by the technology of warmer-molding process of clutter chopped carbon fiber, using phenolic resin as an adhesive. The degree of graphitization, the microstructure and the friction properties were studied. The results show that the clutter chopped carbon fiber fully scatter in the Carbon/Carbon composite and the degree of graphitization of phenolic resin can reach up to 86.2%, this matrix carbon can form the continuous and stable graphitic thin film on the friction surface during braking process so that the composite has fine friction properties and low wear rate.

  • PDF

Evaluation of Tensile Properties of Carbon Fiber Reinforced Composite Laminates with Non-Woven Carbon Mat (부직포를 삽입한 탄소섬유강화 복합적층판의 인장특성 평가)

  • 정성균
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.96-100
    • /
    • 1997
  • Tensile properties of carbon fiber reinforce composite laminates with non-woven carbon mat are evaluated in this paper. Composite laminates are made by inserting non-wovon carbon mat between layers, The specimens were cut and polished according to ASTM standard . Longitudinal and Transverse Young's modulus are obtained by tensile test. Young's moduli without non-woven carbon mat are compared with those with non-woven carbon mat. Longitudinal and Transverse tensile strength are also investigated. Experimental results show that the transverse Young's modulus of composite materials with non-woven carbon mat is about 10% higher than that of composite materials without non-woven carbon mat. Longitudinal tensile strength of composite materials with non-woven carbon mat is about 24% higher than that of composite materials without non-woven carbon mat. Transverse tensile strength and torughness also increase by inserting non-woven carbon mat between layers.

  • PDF

A study on the properties of the carbon long-fiber-reinforced thermoplastic composite material using LFT-D method (LFT-D공법을 이용한 탄소 장섬유 강화 열가소성 복합재의 특성에 관한 연구)

  • Park, Myung-Kyu;Park, Si-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.80-85
    • /
    • 2016
  • Carbon fiber-reinforced composite materials have been widely used in various industrial fields, but there are limits to increasing their strength and stiffness, because of the short-length fibers that are impregnated in them. In this study, a lab-scale small extruder system was developed with the capability to perform the carbon fiber impregnation and extrusion process in order to evaluate the properties of long-length carbon fiber reinforced thermoplastic composite materials molded by the LFT-D method. Specimens were made with the small extruder to press-mold long-length carbon fiber composite materials and evaluate their material properties. As a result, it was found that the carbon fiber length, press load and carbon fiber contents have a considerable influence on the strength and stiffness. Additional studies on such factors as the mixing screw design and coating of the carbon fiber are needed in order to improve the mechanical properties of carbon fiber composite materials.

Dynamic Mechanical Properties of the Symmetric Laminated high Strength Carbon Fiber Epoxy Composite Thin Beams (대칭 적층한 얇은 고강도 탄소섬유 에폭시 복합재 보의 기계적 동특성)

  • 정광섭;이대길;곽윤근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2123-2138
    • /
    • 1994
  • A study on the dynamic mechanical properties of the high strength carbon fiber epoxy composite beam was carried out. The macromechanical model was used for the theoretical analysis of the symmetric laminated composite beam. The anisotropic plate theory and Bernoulli-Euler beam theory were used to predict the effective flexural elastic modulus and the specific damping capacity of laminated composite beam. The free flexural vibration and torsional vibration tests were carried out to determine the specific damping capacities of the unidirectional laminated composite beam. The vibration tests were performed in a vacuum chamber with laser vibrometer system and electromagnetic hammer to obtain accurate experimental data. From the computational and experimental results, it was found that the theoretical values with the macromechanical analysis and the experimental data of symmetric laminated composite beam were in good agreement.