• Title/Summary/Keyword: Carbon fiber(CF)

Search Result 153, Processing Time 0.024 seconds

A Study on the Energy Absorption Characteristics and Fracture Mode of CFRP Laminate Members under Axial Compression (축압축을 받는 CFRP 적층부재의 에너지흡수특성과 파괴모드에 관한 연구)

  • 김정호;정회범;전형주
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.7-12
    • /
    • 2002
  • The object of this paper is to investigate collapse characteristics of CF/Epoxy(Carbon Fiber/Epoxy resin) composite tubes on the change of interlaminar number and fiber orientation angle of outer and to evaluate reappearance of collapse characteristics on the change of tension strength of fibers under static and impact axial compression loads. When a CF/Epoxy composite tube is mushed, static/impact energy is consumed by friction between the loading plate and the splayed fiends of the tube, by fracture of the fibers, matrix and their interface. In general, CF/Epoxy tube with 6 interlaminar number(C-type) absorbed more energy than other tubes(A, B, D-types). The maximum collapse load seemed to increase as the interlaminar number of such tubes increases. The collapse mode depended upon orientation angle of outer of CF/Epoxy tubes and loading status(static/impact). Typical collapse modes of CF/Epoxy tubes are wedge collapse mode, splaying collapse mode and fragmentation collapse mode. The wedge collapse mode was shorn in case of CF/Epoxy tubes with 0$^{\circ}$ orientation angle of outer under static and impact loadings. The splaying collapse mode was shown in only case of CF/Epoxy tubes with 90$^{\circ}$ orientation angie or outer under static loadings, however in impact tests those were collapsed in fragmentation mode. So that CF/Epoxy tube with 6 interlaminar number and 90$^{\circ}$ outer orientation angle presented to the optimal collapse characteristics.

The Electromagnetic Shield Properties of 600V class Low Voltage Cable Using Carbon Fiber (탄소섬유를 이용한 600V 이하 저압 케이블의 전자파 차폐특성)

  • Kim, Young-Seok;Kim, Taek-Hee;Kim, Chong-Min;Shong, Kil-Mok;Kim, Ji-Yeon;Kim, Won-Seok;Kwag, Dong-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.243-248
    • /
    • 2017
  • This study used general carbon fibers(CF), which can be utilized for a low voltage cable screen, as well as metal-coated carbon fibers(MCF) to make cables and analyzed the properties of electromagnetic effectiveness. Both braid CF and MCF cables with 3,000 strands, 16 spindles, and braid density of 90% or over were adopted. The tape-type MCF specimens were spread into a tape(width: 15mm) using a hot melt to make a cable. The shield effectiveness was measured up to the 1GHz range in accordance with IEC 62153-4-6; braid shielded cables featured a superior shielding effect at 63dB than tape-type shielded cables. That was because the tape-type shielded cable has relatively more gaps and holes between carbon fibers than the braid type, resulting in a more inflow or emission of electromagnetic waves. In the case of braid cables, the characteristics of their electromagnetic waves were enhanced, with higher spindles and higher conductivity of carbon fibers. The shield effectiveness of the MCF shielded cable, however, was lower than that of tin-coated one.

The Study on Improvement of Flexural Performance of RC Beam Strengthened with CFRP Plate (탄소섬유보강판으로 보강된 철근콘크리트 보의 휨성능 개선에 관한 연구)

  • 한상훈;최만용;조홍동;박중열;황선일;김경식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.399-404
    • /
    • 2002
  • This paper presents the results cf research on improved flexural performance cf reinforced concrete beams strengthened with bonded carbon fiber reinforced polymer plate. Recently, strengthening technique with CFRP plate were almost carried out by external bonding. But current external bonding technique cf CFRP plates may result in debonding CFRP plate. Therefore, this study proposes a strengthening method that prevents or delays debonding between CFRP plates and concrete and at the same time improves the strength. For this test, there were only 14 test beams manufactured and failure load, deflection, strains and modes cf failure have been examined Test variables included the type cf strengthening, steel ratio and strengthening length, and the effects according to each test variables were analyzed. The experimental results show that the strength and stiffness cf the beam significantly increased between 34.55 and 116.51% and the increase cf the more lead-carrying capacity than the control beams.

  • PDF

Analysis of Thermal Degradation Mechanism by Infrared High-speed Heating of CF-PEKK Composites in Hot Press Forming (핫프레스 공정 기반 CF-PEKK 복합재의 근적외선 고속가열에 의한 열적 열화 반응의 메커니즘 분석)

  • Lee, Kyo-Moon;Park, Soo-Jeong;Park, Ye-Rim;Park, Seong-Jae;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.93-97
    • /
    • 2022
  • The application of infrared heating in the hot press forming of the thermoplastic composites is conducive to productivity with high-speed heating. However, high energy, high forming temperature, and high-speed heating derived from infrared heating can cause material degradation and deteriorate properties such as re-melting performance. Therefore, this study was conducted to optimize the process conditions of the hot press forming suitable for carbon fiber reinforced polyetherketoneketone(CF/PEKK) composites that are actively researched and developed as high-performance aviation materials. Specifically, the degradation mechanisms and properties that may occur in infrared high-speed heating were evaluated through morphological and thermal characteristics analysis and mechanical performance tests. The degradation mechanism was analyzed through morphological investigation of the crystal structure of PEKK. As a result, the size of the spherulite decreased as the degradation progressed, and finally, the spherulite disappeared. In thermal characteristics, the melting temperature, crystallization temperature and heat of crystallization tend to decrease as degradation progresses, and the crystal structure disappeared under long-term exposure at 460℃. In addition, the low bonding strength was observed on the degraded surface, and the bonding surfaces of PEKK did not melt intermittently. In conclusion, it was confirmed that the CF/PEKK composite material degraded at 420℃ in the infrared high-speed heating. Furthermore, the spherulite experienced morphological changes and the re-melting properties of thermoplastic materials were degraded.

An Experimental Study on the Flexural Strengthening Capacity of the Carbon Fiber Sheet (CFS의 휨보강성능에 관한 실험적 연구)

  • 구은숙;이현호;정하선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.573-578
    • /
    • 1998
  • Recently, the Carbon Fiber Sheet(CFS) is widely used to strengthen the RC beams. But the behaviour of the RC beams which is strengthened with the CFS is not clearly defined yet. So, in this study we experimented with simply supported RC beams strengthened with the CFS, under monotonic loads. We included three parameters in this experiment which are the number of the sheets, the length of the sheets, and the existence of the anchor bolts. We investigated the strength effect of the RC beams by adhesion of the CFS, and the strengthening effect of CFS as to the respective parameters.

  • PDF

Study on the Mechanical Properties of Hybridized Carbon Fiber Composite According to Stacking Structure (하이브리드 탄소섬유 적층구조에 따른 복합재료의 기계적 특성 연구)

  • Koo, Seon Woong;Oh, Woo Jin;Won, Jong Sung;Lee, Ha Ram;Youn, Ju Young;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.313-320
    • /
    • 2018
  • As carbon fiber reinforced composites(CFRP) are widely used in aerospace, automobile, marine, and sports goods applications, they have been studied extensively by various researchers. However, CFRP have been pointed out because of machining problems such as delamination and burr phenomenons. Especially, hole machining process, drilling, has non-smooth features on inlet and outlet surfaces of drilled hole. This kind of machining problem can be controlled to some extent by using high modulus pitch-CF, which has considerable effects on fracture behavior of composite compared with only PAN CF composite. Therefore, PAN and pitch hybridized CF composites were prepared having high strength and modulus. The results demonstrate that the hybrid CFRP specimens with pitch CF offer the good potential to enhance modulus as well as strength properties. Dynamic mechanical, flexural, and impact properties were measured and analyzed. Morphological surface of the composites were also observed by IFS-28, canon after hole machining.

Bond Strength of Super-CFRP Rod in Concrete

  • Seo, Sung-Tag
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.29-34
    • /
    • 2006
  • Elastic modulus, tensile and bond capacities are important factors for developing an effective reinforcing action of a flexural member as a reinforcing material for concrete structures. Reinforcement must have enough bond capacity to prevent the relative slip between concrete and reinforcement. This paper presents an experimental study to clarify the bond capacity of prestressed carbon fiber reinforced polymer(CFRP) rod manufactured by an automatic assembly robot. The bond characteristics of CFRP rods with different pitch of helical wrapping were analyzed experimentally. As the result, all types of CFRP rods show a high initial stiffness and good ductility. The mechanical properties of helical wrapping of the CFRP rods have an important effect on the bond of these rods to concrete after the bond stress reached the yield point. The stress-slip relationship analyzed from the pull-out test of embedded cables within concrete was linear up to maximum bond capacity. The deformation within the range of maximum force seems very low and was reached after approximately 1 mm. The average bond capacity of CF20, CF30 and CF40 was about 12.06 MPa, 12.68 MPa and 12.30 MPa, respectively. It was found that helical wrapping was sufficient to yield bond strengths comparable to that of steel bars.

Finite Element Method Based Structural Analysis of Z-Spring with CF&GF Hybrid Prepreg Lamination Patterns (유한요소해석을 이용한 CF&GF Hybrid Prepreg 적층 패턴에 따른 Z-Spring의 구조해석)

  • Kim, Jeong-Keun;Choi, Sun-Ho;Kim, Young-Keun;Kim, Hong-Gun;Kwac, Lee-Gu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.60-67
    • /
    • 2021
  • Recently, research attention has been focused on vibration-free vehicles to transport small numbers of expensive electronic products. Vibration-free vehicles can be used to transport expensive test equipment or semiconductors, mainly produced in the domestic IT industry, and can serve as a readily available transportation system for short driving distances due to the increased efficiency on narrow national highways. This study was aimed at developing a Z-Spring to minimize the vibration by installing an air spring instead of the plate spring applied to conventional freight cars and to prevent the damage of the loaded cargo from the shock occurring during movement. The mechanical properties (elastic modulus, tensile strength, and shear strength) of carbon fiber (CF) and glass fiber (GF) prepreg were derived, and ANSYS ACP PrepPost analyses were performed. It was observed that in the case of hybrid composites, the total deformation and equivalent stress are higher than that of CFRP; however, in terms of the unit cost, the hybrid Z-Spring is more inexpensive and durable compared to the GF.

Relationship between fatigue resistance and fracture behavior of the carbon fiber sheet and carbon fiber strand sheet reinforced RC slabs (Carbon fiber sheet 및 carbon fiber strand sheet 접착보강한 RC 상판의 내피로성과 파괴거동과의 상관관계)

  • Won, Chan Ho;Abe, Tadashi;Ahn, Tae-Ho;Kim, Do Keun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.294-298
    • /
    • 2015
  • According to the results of "Highway Bridges Long Life Repair Plan." The most serious damage to RC slabs is caused by fatigue deterioration, which results from the driving loads of large-sized vehicles, and aging of materials. In response to this, adhesion reinforcement using carbon fiber sheet is being adopted. In addition, carbon fiber strand sheet that holds the same material characteristics as CFS, but has superior workability, has been developed as a new reinforcement material. However, almost no studies have been conducted on CFSS in relation to fatigue resistance evaluation through fatigue tests under running wheel loads, with the exception of a few by some organizations. Therefore, in this study, specimens with front CFS adhesion reinforcement on the bottom surface of the RC slab and specimens with grid-type CFSS reinforcement were manufactured. Then, fatigue tests under running wheel loads were conducted, and thus fatigue resistance was evaluated using the specimens.

Behavior of Concrete Columns Confined by Carbon Fiber Sheets under a Constant Axial Force with Reversed Cyclic Lateral Loading (일정축력하의 탄소섬유쉬트 보강기둥의 횡가력시 거동특성에 관한 실험연구)

  • Chun, Sung-Chul;Park, Hyung-Chul;Ahn, Jae-Hyen;Park, Chil-Lim
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.147-156
    • /
    • 1999
  • An investigation was conducted into the flexural behavior of earthquake damaged reinforced concrete columns repaired with carbon fiber sheets. Six column specimens were tested to failure under reversed cyclic loading. Two columns were specimens for control with no sheets and tested. These columns were repaired with carbon fiber sheets and retested to evaluate the effect of the confinement of the carbon fiber on the damaged column. Another two columns were repaired and tested with no pre-cyclic loading. The test specimens were designed to model single bent under a constant axial force with reversed cyclic lateral loading. Carbon fiber sheets were used to repair damaged concrete columns in the critically stressed areas near the column footing joint and the physical, mechanical properties of carbon fiber sheets are described. The performance of repaired columns in terms of their hysteretic response is evaluated and compared to those of the original columns. The results indicate that the repaire technique with carbon fiber sheets is highly effective. Both flexural strength and displacement ductility of repaired columns were higher than those of the original columns.