• 제목/요약/키워드: Carbon doping

검색결과 190건 처리시간 0.035초

Modification of the electrical parameters of CNT-doped deformed-helix ferro-electric liquid crystals

  • Sood, Nitin;Khosla, Samriti;Singh, Darshan;Bawa, S.S.
    • Journal of Information Display
    • /
    • 제13권4호
    • /
    • pp.145-149
    • /
    • 2012
  • Liquid crystals are useful for a wide range of applications due to their exceptional properties. Doping of liquid crystals with carbon nanotubes (CNTs), even at very low concentrations, produces a detectable effect on the liquid crystal (LC) properties that can be very attractive for various functions. In this study, an attempt was made to investigate the effect of CNTs on the electrical properties of a short-pitch and high-spontaneous-polarization ferro-electric LC mixture, FLC-6304, at different temperatures. The inclusion of the CNTs significantly reduced the polarization at temperatures well within the $SmC^*$ phase, but the effect was gradually reversed as the transition temperature was approached. The insertion of the CNTs also reduced the response time and the rotational viscosity of the FLC mixture, which is highly desirable in the LCD industry.

팔라듐이 담지된 중형 기공성 탄소 재료를 이용한 수소 저장 (Hydrogen Storage Using Pd Doped Mesoporous Carbon Materials)

  • 김우영;김동민;홍영택;강태균;이종협
    • 청정기술
    • /
    • 제12권2호
    • /
    • pp.107-111
    • /
    • 2006
  • 본 연구에서는 실리카 주형을 사용하여 중형기공성 탄소 재료인 CMK-3와 CMK-5를 제조하였으며 이의 수소 저장량을 측정하였다. 비교 물질로는 탄소 재료 중 수소 저장에 관해 가장 많은 연구가 이루어진 다중벽 탄소나노튜브를 사용하였다. 실험 결과, 탄소체에 흡착되는 수소의 양은 탄소 물질의 표면적과 매우 밀접한 관계가 있으며 표면적이 증가될수록 수소 저장량이 증가함을 확인할 수 있다. 본 연구에서 사용된 탄소 재료 중 CMK-5가 가장 높은 수소 저장량을 나타내었으며 CMK-3, MWCNT 순으로 높은 수소 저장량을 보였다. CMK-5의 경우, 팔라듐을 도핑하였을 때 수소 저장량이 매우 크게 증가하였으며 이는 hydrogen spill-over 효과에 의한 것으로 생각되며 이와 같은 현상은 팔라듐이 도핑된 CMK-5의 수소 저장량을 결정하는데 가장 큰 역할을 하는 것으로 나타났다.

  • PDF

전자빔 조사에 의한 유리상 탄소에서의 구조적 변화와 열전 성능의 상관관계 (Correlation between a Structural Change and a Thermoelectric Performance of a Glassy Carbon Thin Film Induced by Electron Beam Irradiation)

  • 오인선;조준현;안기석;유정우
    • Composites Research
    • /
    • 제29권4호
    • /
    • pp.156-160
    • /
    • 2016
  • 유리상 탄소는 열적으로 안정하고, 화학적 반응성이 매우 낮으며, 다양한 크기로 제작이 가능하고, 전기적 저항 또한 낮아서 다양한 극한 환경에서 사용 가능하다. 이 논문에서는 전자빔 조사가 유리상 탄소 박막의 구조 변화에 미치는 영향과 그에 따른 열전효과 변화에 대해 연구하였다. 라만 분광 특성 분석을 바탕으로 유리상 탄소 박막에 전자빔 조사에 따라 결정화 또는 비정질화가 일어나는 것을 확인하였다. 또한, 이러한 결정변화가 유리상 탄소 박막의 자유전자 도핑 농도의 변화시키며 그에 따른 제백 상수나 전기적 전도도의 변화도 확인하였다. 전자빔 조사로 인하여 유리상 탄소의 열전파워 펙터가 최대 200%까지 향상되는 것을 보여 주었다.

Carbon-coated boron using low-cost naphthalene for substantial enhancement of Jc in MgB2 superconductor

  • Ranot, Mahipal;Shinde, K.P.;Oh, Y.S.;Kang, S.H.;Jang, S.H.;Hwang, D.Y.;Chung, K.C.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권3호
    • /
    • pp.40-43
    • /
    • 2017
  • Carbon coating approach is used to prepare carbon-doped $MgB_2$ bulk samples using low-cost naphthalene ($C_{10}H_8$) as a carbon source. The coating of carbon (C) on boron (B) powders was achieved by direct pyrolysis of naphthalene at $120^{\circ}C$ and then the C-coated B powders were mixed well with appropriate amount of Mg by solid state reaction method. X-ray diffraction analysis revealed that there is a noticeable shift in (100) and (110) Bragg reflections towards higher angles, while no shift was observed in (002) reflections for $MgB_2$ doped with carbon. As compared to un-doped $MgB_2$, a systematic enhancement in $J_c(H)$ properties with increasing carbon doping level was observed for naphthalene-derived C-doped $MgB_2$ samples. The substantial enhancement in $J_c$ is most likely due to the incorporation of C into $MgB_2$ lattice and the reduction in crystallite size, as evidenced by the increase in the FWHM values for doped samples.

DLC 박막의 전기전도성, 투과율 및 가스베리어 특성에 관한 연구 (Study on Electrical Conductivity, Transmittance and Gas Barrier Properties of DLC Thin Films)

  • 박새봄;김치환;김태규
    • 열처리공학회지
    • /
    • 제31권4호
    • /
    • pp.187-193
    • /
    • 2018
  • In this study, the electrical conductivity, transmittance and gas barrier properties of diamond-like carbon (DLC) thin films were studied. DLC is an insulator, and has transmittance and oxygen gas barrier properties varying depending on the thickness of the thin film. Recently, many researchers have been trying to apply DLC properties to specific industrial conditions. The DLC thin films were deposited by PECVD (Plasma Enhanced Chemical Vapor Deposition) process. The doping gas was used for the DLC film to have electrical conductivity, and the optimum conditions of transmittance and gas barrier properties were established by adjusting the gas ratio and DLC thickness. In order to improve the electrical conductivity of the DLC thin film, $N_2$ doping gas was used for $CH_4$ or $C_2H_2$ gas. Then, a heat treatment process was performed for 30 minutes in a box furnace set at $200^{\circ}C$. The lowest sheet resistance value of the DLC film was found to be $18.11k{\Omega}/cm^2$. On the other hand, the maximum transmittance of the DLC film deposited on the PET substrate was 98.8%, and the minimum oxygen transmission rate (OTR) of the DLC film of $C_2H_2$ gas was 0.83.

Carbon Nanotubes Doped with Nitrogen, Pyridine-like Nitrogen Defects, and Transition Metal Atoms

  • Mananghaya, Michael R.
    • 대한화학회지
    • /
    • 제56권1호
    • /
    • pp.34-46
    • /
    • 2012
  • Dopants and defects can be introduced as well as the intercalation of metals into single wall carbon nanotubes (SWCNTs) to modify their electronic and magnetic properties, thus significantly widening their application areas. Through spinpolarized density functional theory (DFT) calculations, we have systemically studied the following: (i) (10,0) and (5,5) SWCNT doped with nitrogen ($CN_xNT$), (ii) (10,0) and (5,5) SWCNT with pyridine-like defects (3NV-$CN_xNT$), and (iii) chemical functionalization of (10,0) and (5,5) 3NV-$CN_xNT$ with 12 different transition metals (TMs) (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, and Pt). Attention was done in searching for the most stable configurations, deformation, calculating the formation energies, and exploring the effects of the doping concentration of nitrogen and pyridine-like nitrogenated defects on the electronic properties of the nanotubes. Also, calculating the corresponding binding energies and effects of chemical functionalization of TMs on the electronic and magnetic properties of the nanotubes has been made. We found out that the electronic properties of SWCNT can be effectively modified in various ways, which are strongly dependent not only on the concentration of the adsorbed nitrogen but also to the configuration of the adsorbed nitrogen impurities, the pyridine-like nitrogenated defects, and the TMs absorbed; due to the strong interaction between the d orbitals of TMs and the p orbitals of N atoms, the binding strengths of TMs with the two 3NV-$CN_xNT$ are significantly enhanced when compared to the pure SWCNTs.

TiO2@carbon Core-Shell Nanostructure Electrodes for Improved Electrochemical Properties in Alkaline Solution

  • Kim, Do-Young;Lee, Young-Woo;Han, Sang-Beom;Ko, A-Ra;Kim, Hyun-Su;Kim, Si-Jin;Oh, Sang-Eun;Park, Kyung-Won
    • 전기화학회지
    • /
    • 제15권2호
    • /
    • pp.90-94
    • /
    • 2012
  • We report nanostructure electrodes with $TiO_2$ as a core and carbon as a shell ($TiO_2$@C) for oxygen reduction in alkaline solution. The structure of core-shell electrodes is characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction method, and X-ray photoelectron microscopy. The electrochemical properties of the $TiO_2$@C electrodes are characterized using a potentiostat and compared with those of carbon supported Pt catalyst. In particular, the core-shell electrode with dominant pyridinic-N component exhibits an imporved electrocatalytic activity for oxygen reduction reaction in alkaline solution.

탄소 나노 튜브 함량에 따른 TN 액정 셀의 잔류 DC 연구 (Effect of Carbon Nanotube Concentrations on Residual DC of a Twisted Nematic Liquid Crystal Cell)

  • 백인수;박경아;전상연;안계혁;이승희;이영희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.297-298
    • /
    • 2005
  • We have fabricated twisted nematic (TN) liquid crystal cells doped by carbon nanotubes (CNTs) with different CNT wt. %. With a minute amount doping, multi-walled CNTs did not perturb the liquid crystal orientations at the off- and on-state. The hysteresis studies of voltage-dependent capacitance (V-C) under the influence of electric field generated by ac and dc voltage show that the residual do, which is tightly related to image sticking problem in liquid crystal displays, is greatly reduced due to ion trapping by CNTs. Also, the V-C hysteresis shows dependency of capacitance on concentration of multi-walled CNTs.

  • PDF