• 제목/요약/키워드: Carbon dioxide emissions

Search Result 458, Processing Time 0.026 seconds

Characterizing Spatiotemporal Variations and Mass Balance of CO2 in a Stratified Reservoir using CE-QUAL-W2 (CE-QUAL-W2를 이용한 성층 저수지에서 CO2의 시공간적 분포 및 물질수지 분석)

  • Park, Hyungseok;Chung, Sewoong
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.508-520
    • /
    • 2020
  • Dam reservoirs have been reported to contribute significantly to global carbon emissions, but unlike natural lakes, there is considerable uncertainty in calculating carbon emissions due to the complex of emission pathways. In particular, the method of calculating carbon dioxide (CO2) net atmospheric flux (NAF) based on a simple gas exchange theory from sporadic data has limitations in explaining the spatiotemporal variations in the CO2 flux in stratified reservoirs. This study was aimed to analyze the spatial and temporal CO2 distribution and mass balance in Daecheong Reservoir, located in the mid-latitude monsoon climate zone, by applying a two-dimensional hydrodynamic and water quality model (CE-QUAL-W2). Simulation results showed that the Daecheong Reservoir is a heterotrophic system in which CO2 is supersaturated as a whole and releases CO2 to the atmosphere. Spatially, CO2 emissions were greater in the lacustrine zone than in the riverine and transition zones. In terms of time, CO2 emissions changed dynamically according to the temporal stratification structure of the reservoir and temporal variations of algae biomass. CO2 emissions were greater at night than during the day and were seasonally greatest in winter. The CO2 NAF calculated by the CE-QUAL-W2 model and the gas exchange theory showed a similar range, but there was a difference in the point of occurrence of the peak value. The findings provide useful information to improve the quantification of CO2 emissions from reservoirs. In order to reduce the uncertainty in the estimation of reservoir carbon emissions, more precise monitoring in time and space is required.

Analysis of the Relationship between CO2 Emissions, OCO-2 XCO2 and SIF in the Korean Peninsula (한반도 지역에서 CO2 배출량과 OCO-2 XCO2 및 SIF의 관계성 분석)

  • Yeji Hwang;Jaemin Kim;Yun Gon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.169-181
    • /
    • 2023
  • Recently, in order to reduce carbon dioxide (CO2) emissions, which is the main cause of global warming, Korea has declared carbon emission reduction targets and carbon neutral. Accurate assessment of regional emissions and atmospheric CO2 concentrations is becoming important as a result. In this study, we identified the spatiotemporal differences between satellite-based atmospheric CO2 concentration and CO2 emissions for the Korean Peninsula region using column-averaged CO2 dry-air mole fraction from the Orbiting Carbon Observatory-2 and emission inventory. And we explained these differences using solar-induced fluorescence (SIF), a photosynthetic reaction index according to vegetation growth. The Greenhouse Gas Inventory and Research Center (GIR) and Emissions Database for Global Atmospheric Research (EDGAR) emissions continued to increase in Korea from 2014 to 2018, but the satellite-based atmospheric CO2 concentration decreased in 2018, respectively. Regionally, GIR and EDGAR emissions increased in 2018 in Gyeonggi-do and Chungcheongbuk-do, but satellite-based CO2 concentrations decreased for the corresponding years. In addition, the correlation analysis between emissions and satellite-based CO2 concentration showed a low correlation of 0.22 (GIR) and 0.16 (EDGAR) in Seoul and Gangwon-do. Atmospheric CO2 concentrations showed a different correlation with SIF by region. In the CO2-SIF correlation analysis for the growing season (May to September), Seoul and Gyeonggi-do showed a negative correlation coefficient of -0.26, Chungcheongbuk-do and Gangwon-do showed a positive correlation coefficient of 0.46. Therefore, it can be suggested that consideration of the CO2 absorption process is necessary for analyzing the relationship between the atmospheric CO2 concentration and emission inventory.

Study on the Pressurized Steam Reforming of Natural Gas and Biogas Mixed Cokes Oven Gas (코크스오븐가스 기반 천연가스, 바이오가스가 혼합된 연료의 가압 수증기 개질 반응에 관한 연구)

  • CHEON, HYUNGJUN;HAN, GWANGWOO;BAE, JOONGMYEON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.111-118
    • /
    • 2019
  • Greenhouse gas emissions have a profound effect on global warming. Various environmental regulations have been introduced to reduce the emissions. The largest amount of greenhouse gases, including carbon dioxide, is produced in the steel industry. To decrease carbon dioxide emission, hydrogen-based iron oxide reduction, which can replace carbon-based reduction has received a great attention. Iron production generates various by-product gases, such as cokes oven gas (COG), blast furnace gas (BFG), and Linz-Donawitz gas (LDG). In particular, COG, due to its high concentrations of hydrogen and methane, can be reformed to become a major source of hydrogen for reducing iron oxide. Nevertheless, continuous COG cannot be supplied under actual operation condition of steel industry. To solve this problem, this study proposed to use two alternative COG-based fuel mixtures; one with natural gas and the other with biogas. Reforming study on two types of mixed gas were carried out to evaluate catalyst performance under a variety of operating conditions. In addition, methane conversion and product composition were investigated both theoretically and experimentally.

A study on measurement of particulate matter, nitrogen oxide and carbon oxide from main engine in training ship

  • Choi, Jung-Sik;Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.792-798
    • /
    • 2013
  • In this study, we have carried out measurement for exhaust emissions such as particulate matter (PM), nitrogen oxide and carbon oxide from main engines installed on the training ships, HANBADA and HANNARA, of Korea Maritime University. In particular, we considered the two conditions; at arrivals/departures and at constant speed of about 160 rpm. The result showed that the concentration of PM at the ship arrival was 2.41mg/m3. On the other hand, when the ship is on the navigation condition, the concentration of PM was 1.34 mg/m3. The concentrations of nitrogen oxide and carbon oxide were measured in the range of 1,120~1,600 ppm and 320~1,450 ppm at the arrival and departure at the port. Under constant speed condition, the concentrations of nitrogen oxide and carbon oxide were 913~1,470 ppm and 73~460 ppm, respectively. Generally, the concentrations of exhaust emissions under the arrivals and departures were higher than that of constant speed condition. These results imply that the ship operation skill to prevent a sudden load change of main engine is needed during the arrival or departure. In addition, it means that the difference of exhaust emissions according to navigation conditions has to be considered when the reduction technologies of air pollutants from ships are developed.

Geomechanical assessment of reservoir and caprock in CO2 storage: A coupled THM simulation

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Advances in Energy Research
    • /
    • v.6 no.1
    • /
    • pp.75-90
    • /
    • 2019
  • Anthropogenic greenhouse gas emissions are rising rapidly despite efforts to curb release of such gases. One long term potential solution to offset these destructive emissions is the capture and storage of carbon dioxide. Partially depleted hydrocarbon reservoirs are attractive targets for permanent carbon dioxide disposal due to proven storage capacity and seal integrity, existing infrastructure. Optimum well completion design in depleted reservoirs requires understanding of prominent geomechanics issues with regard to rock-fluid interaction effects. Geomechanics plays a crucial role in the selection, design and operation of a storage facility and can improve the engineering performance, maintain safety and minimize environmental impact. In this paper, an integrated geomechanics workflow to evaluate reservoir caprock integrity is presented. This method integrates a reservoir simulation that typically computes variation in the reservoir pressure and temperature with geomechanical simulation which calculates variation in stresses. Coupling between these simulation modules is performed iteratively which in each simulation cycle, time dependent reservoir pressure and temperature obtained from three dimensional compositional reservoir models in ECLIPSE were transferred into finite element reservoir geomechanical models in ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, efficiency of this approach is demonstrated through a case study of oil production and subsequent carbon storage in an oil reservoir. The methodology and overall workflow presented in this paper are expected to assist engineers with geomechanical assessments for reservoir optimum production and gas injection design for both natural gas and carbon dioxide storage in depleted reservoirs.

A Study on the Efficiency Analysis for the Domestic Container Terminals Considering Carbon Dioxide Emissions (이산화탄소 배출량을 고려한 국내 컨테이너터미널 효율성 분석)

  • Min-Seop Sim;Yul-Seong Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.68-69
    • /
    • 2023
  • Recently, decarbonization has been emphasized worldwide to cope with climate change, and carbon neutrality by 2050 has emerged as a global agenda. The domestic port authorities have been participating in the global agenda in line with the government regulations. Since 2010, when decarbonization has been regarded as an important assignment in ports, container terminal efficiency considering undesirable outputs such as Carbon dioxide has been analyzed. However, most previous studies measured carbon dioxide emissions according to the Tier 1 and it is a first time to analyze container terminal efficiency based on the Tier 3 presented in the IPCC guidelines. 17 domestic container terminal operators were considered as decision making units and DEA-SBM Model was used. Subsequently, Undesirable outputs model was conducted to calculate the environmental efficiency.

  • PDF

The Durability and Exhaust Emission Characteristics of an IDI Diesel Engine Using Biodiesel Fuel (바이오디젤유를 사용하는 간접분사식 디젤기관의 내구 및 배기 특성)

  • Ryu, Kyung-Hyun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.115-122
    • /
    • 2006
  • To evaluate the durability characteristics of in-direct injection diesel engine using BDF 20(a blend of 20% biodiesel fuel and 80% diesel fuel in volume), an IDI diesel engine used to commercial vehicle was operated on BDF 20 for 300 hours. Engine dynamometer testing was completed at regularly scheduled intervals to investigate the combustion characteristics, engine performance and exhaust emissions. The engine performance and exhaust emissions were sampled at 1 hour interval for analysis. From the results, the combustion variations such as the combustion maximum pressure($P_{max}$) and the crank angle at which this maximum pressure occurs(${\Theta}_{Pmax}$) were not appeared during long-time dynamometer testing. Also, BSFC with BDF 20 resulted in lower than with diesel fuel. The peak pressure with BDF 20 was higher than that with diesel fuel due to the oxygen content in BDF. And, BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions with a little increase of oxides of nitrogen than diesel fuel. It was concluded that there was no unusual deterioration of the engine, or any unusual change in exhaust emissions during the durability test of an IDI diesel engine using BDF 20.

Development of Productivity-based Estimating Tool for Fuel Use and Emissions from Earthwork Construction Activities

  • Hajji, Apif M.;Lewis, Michael Phil
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.2
    • /
    • pp.58-65
    • /
    • 2013
  • Earthwork activities are typically performed by heavy duty diesel (HDD) construction equipment that consumes large quantities of diesel fuel use and emits large quantities of pollutants, including nitrogen oxides (NOx), particulate matters (PM), hydrocarbon (HC), carbon monoxide (CO), and carbon dioxide ($CO_2$). This paper presents the framework for a model that can be used to estimate the production rate, activity duration, total fuel use, and total pollutants emissions for earthwork activities. A case study and sensitivity analysis for an excavator performing excavations are presented. The tool is developed by combining the multiple linear regressions (MLR) approach for modeling the productivity with the EPA's NONROAD model. The excavator data from RSMeans Heavy Construction Data were selected to build the productivity model, and emission factors of all type of pollutants from NONROAD model were used to estimate the total fuel use and emissions. The MLR model for the productivity rate can explain 92% of the variability in the data. Based on the model, the fuel use and emissions of excavator increase as the trench depth increase, but as the bucket size increase, the fuel use and emissions decrease.

Durability Characteristics of an IDI Diesel Engine Using Biodiesel Fuel (바이오디젤유를 사용하는 간접분사식 디젤기관의 내구 특성)

  • Ryu, Kyun-Hyun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.120-127
    • /
    • 2005
  • An IDI diesel engine used to agricultural tractors was fueled with $20\%$ biodiesel fuel(BDF 20) in excess of 300 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. The engine performance and exhaust emissions were sampled at 1 hour interval for analysis. The combustion variation such as the combustion maximum pressure and the crank angle at this maximum pressure was not appeared during long-time dynamometer testing. Also, BSFC with BDF 20 resulted in lower than with diesel fuel. Since the biodiesel fuel used in this study includes oxygen of about $11\%$, it could influence the combustion process strongly. So, BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions without special increase of oxides of nitrogen than diesel fuel. It was concluded that there was no unusual deterioration of the engine, or any unusual change in exhaust emissions from using the BDF 20.

Combustion Characteristics of an Agricultural Diesel Engine using Biodiesel Fuel

  • Ryu, Kyunghyun;Oh, Youngtaig
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.709-717
    • /
    • 2004
  • Biodiesel has great potential as an alternative fuel for diesel engines that would reduce air pollution. It is a domestically produced, renewable fuel that can be manufactured from fresh or used vegetable oils, or from animal fats. In this study, a biodiesel fuel derived from rice bran oil was tested as an alternative fuel for agricultural diesel engines. The emissions were characterized for both neat and blended biodiesel fuels, and for conventional diesel fuel. Since this biodiesel fuel contained 11 % oxygen, it strongly influenced the combustion process. The use of biodiesel fuel resulted in lower carbon monoxide, carbon dioxide, and smoke emissions, without any increase in nitrous oxide emissions. The study demonstrated that biodiesel fuel could be effectively used as a renewable and environmentally innocuous fuel for agricultural diesel engines.