• 제목/요약/키워드: Carbon dioxide absorption

검색결과 205건 처리시간 0.03초

알칼리 활성화된 고로슬래그 페이스트의 물리화학적 특성 및 이산화탄소 흡수능 평가 (Physicochemical Characteristics and Carbon Dioxide Absorption Capacities of Alkali-activated Blast-furnace Slag Paste)

  • 안해영;박철우;박희문;송지현
    • 한국도로학회논문집
    • /
    • 제17권2호
    • /
    • pp.99-105
    • /
    • 2015
  • PURPOSES: In this study, alkali-activated blast-furnace slag (AABFS) was investigated to determine its capacity to absorb carbon dioxide and to demonstrate the feasibility of its use as an alternative to ordinary Portland cement (OPC). In addition, this study was performed to evaluate the influence of the alkali-activator concentration on the absorption capacity and physicochemical characteristics. METHODS: To determine the characteristics of the AABFS as a function of the activator concentration, blast-furnace slag was activated by using calcium hydroxide at mass ratios ranging from 6 to 24%. The AABFS pastes were used to evaluate the carbon dioxide absorption capacity and rate, while the OPC paste was tested under the same conditions for comparison. The changes in the surface morphology and chemical composition before and after the carbon dioxide absorption were analyzed by using SEM and XRF. RESULTS: At an activator concentration of 24%, the AABFS absorbed approximately 42g of carbon dioxide per mass of paste. Meanwhile, the amount of carbon dioxide absorbed onto the OPC was minimal at the same activator concentration, indicating that the AABFS actively absorbed carbon dioxide as a result of the carbonation reaction on its surface. However, the carbon dioxide absorption capacity and rate decreased as the activator concentration increased, because a high concentration of the activator promoted a hydration reaction and formed a dense internal structure, which was confirmed by SEM analysis. The results of the XRF analyses showed that the CaO ratio increased after the carbon dioxide absorption. CONCLUSIONS : The experimental results confirmed that the AABFS was capable of absorbing large amounts of carbon dioxide, suggesting that it can be used as a dry absorbent for carbon capture and sequestration and as a feasible alternative to OPC. In the formation of AABFS, the activator concentration affected the hydration reaction and changed the surface and internal structure, resulting in changes to the carbon dioxide absorption capacity and rate. Accordingly, the activator ratio should be carefully selected to enhance not only the carbon capture capacity but also the physicochemical characteristics of the geopolymer.

건축 및 토목 구조물의 CO2 수지 평가에 관한 연구 (A Study on the CO2 Balance Evaluation of Building and Civil Engineering Structures)

  • 조형규;송훈;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 1부
    • /
    • pp.121-122
    • /
    • 2011
  • Globally about 40% of total carbon dioxide emissions occupies from the construction industry. Therefore, it is important to quantitatively calculate carbon dioxide emission of concrete prior to the reduction of carbon dioxide. ddd In addition, it is also important to quantitatively calculate carbon dioxide absorption of concrete because concrete absorbs in a measure of carbon dioxide. In this study, it carried out carbon dioxide balance evaluation of building and civil engineering structures through carbon dioxide balance evaluation method of concrete. Consequently absorption rate compared with carbon dioxide emission is about 2.5~5.18%.

  • PDF

이산화탄소 흡수량 정량분석을 통한 콘크리트의 친환경성능에 관한 실험적 연구 (An Experimental Study on the Sustainable Performance of Concrete through the Quantitative Analysis of Carbon Dioxide Absorption)

  • 최진영;이한승;경제운;이상현;양내원
    • KIEAE Journal
    • /
    • 제7권4호
    • /
    • pp.113-118
    • /
    • 2007
  • From the construction material the cement and the concrete which will reach to 90% are used to construction. But the cement occurrence (from the whole industry 4.4% of carbon dioxide exhaust quantity) makes the carbon dioxide of manufacture hour and anti- the recognition which is an environment industry. The cement absorbs the carbon dioxide during life period of the life time. It calls carbonation. In this study in order to evaluate the carbon dioxide absorption of the cement test produced the mortar specimens which it follows in the W/C. And carbonatable material of mortar specimens (calcium hydroxide) the quantitly it measured, reference study it led and absorption of carbon dioxide quantity it produced. Finally two result comparisons leads and it is a fundamental study which does the test evaluation possibility and a propriety investigation of carbon dioxide absorption quantity in objective.

PREPARATION OF CARBON DIOXIDE ABSORPTION MAP USING KOMPSAT-2 IMAGERY

  • Kim, So-Ra;Lee, Woo-Kyun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.200-203
    • /
    • 2008
  • The objective of this study is to produce the $CO_2$ (carbon dioxide) absorption map using KOMPSAT-2 imagery. For estimating the amount of $CO_2$ absorption, the stand biomass of forest was estimated with the total weight, which was the sum of individual tree weight. Individual tree volumes could be estimated by the crown width extracted from KOMPSAT-2 imagery. In particular, the carbon conversion index and the ratio of the $CO_2$ molecular weight to the C atomic weight, reported in the IPCC (Intergovernmental Panel on Climate Change) guideline, was used to convert the stand biomass into the amount of $CO_2$ absorption. Thereafter, the KOMPSAT-2 imagery was classified with the SBC (segment based classification) method in order to quantify $CO_2$ absorption by tree species. As a result, the map of $CO_2$ absorption was produced and the amount of $CO_2$ absorption was estimated by tree species.

  • PDF

과도상태의 회전형 흡수기에서 혼합기체 중 이산화탄소 흡수량 계산 모델 (A Mathematical Model on the Absorption Rate of Carbon-Dioxide in Mixed Gas During the Transient State of Rotary Type Absorbers)

  • 백현종
    • 대한기계학회논문집B
    • /
    • 제26권12호
    • /
    • pp.1729-1737
    • /
    • 2002
  • A mathematical model for the prediction of carbon-dioxide absorption rate during the transient state of rotary type absorber is developed. The rotary type absorber operates using a fast rotating porous structure and clean water. The model for the transient state rotary type absorbers is based on the steady state model of packed tower absorber. The paper manipulates the operating data of an arbitrary quasi-steady state condition of rotary type absorber for the determination of the coefficients involved in the model developed. The prediction accuracy is evaluated from the measured data of rotary type absorber operated under fast transient state. The measured data include the mole fraction of carbon dioxide in mixed gas and the pressure of absorber. The relative error in carbon dioxide prediction is estimated to be 20% at maximum. The model is successfully applied for the prediction of the behavior of a closed cycle diesel engine.

아민기 개질 탄소를 이용한 이산화탄소 분리 특성 (Characteristics of carbon dioxide separation using amine functionalized carbon)

  • 차왕석;임병준;김준수;이성연;박태준;장현태
    • 한국산학기술학회논문지
    • /
    • 제22권4호
    • /
    • pp.17-24
    • /
    • 2021
  • 새로운 이산화탄소 분리용 흡착제 개발은 흡착속도, 소수성, 상용 흡착제보다 낮은 재생온도 등을 고려하여야 한다. 본 연구에서는 CO2를 분리하기 위하여 아미노실란이 그라프팅된 활성탄을 합성하였다. 아민 작용기 전구체로 methyltrimethoxysilane(MTMS) and 3-Aminopropyl-triethoxysilane(APTES)을 사용하여 그라프팅하였다. APTES를 그라프팅 활성탄이 MTMS을 사용한 것보다 우수한 흡착 특성을 나타내었다. 온도 및 이산화탄소 분압에 따른 흡착 특성으로 이산화탄소 분리 메커니즘을 규명하였다. 이산화탄소의 흡수/흡착능은 25 ℃에서 아민 그라프팅 활성탄과 활성탄과 비슷하지만 아민 그라프팅 활성탄이 75 ℃에서 더 높게 나타났다. 아민 작용기 그라프팅 활성탄은 이산화탄소 분압이 1 % 인 조건에서 활성탄보다 더 우수한 흡수능을 나타내었다. 아미노실란 그라프팅 활성탄은 물리적 흡착 특성을 지닌 화학적 흡수 메카니즘을 나타내었다. 아민 작용기가 부여되어 개질된 고체상 흡수/흡착제는 이산화탄소 흡착/흡수 공정만 아닌 재료 관련 산업에 큰 영향을 미칠 수 있는 고성능 복합 재료이며, 개발된 흡착제는 흡수/흡착 및 분리 관련 산업 공정에 적용될 수 있다.

광합성균을 첨가한 이산화탄소 흡수 콘크리트의 기초적 특성 (The Fundamental Properties of Carbon Dioxide Absorption Concrete using Photosynthetic Bacterium Added)

  • 임지희;이건철;윤승조;정재호;김영민
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.73-74
    • /
    • 2013
  • In this study, we examined the properties of the concrete for the adsorption of carbon dioxide by adding in photosynthetic bacteria. As for the experimental plan, we measured slump, carbon dioxide concentration and compressive strength. The findings revealed the non-plastic cement added with photosynthetic bacteria had the greatest flexibility and showed carbon dioxide absorption and condensation delay due to the sugar constituents of photosynthetic bacteria. Giver the progress in the studies on the strength development, it is estimated to be used as CO2 reduction concrete.

  • PDF

Absorption of Carbon Dioxide into Aqueous AMP Solutions

  • So, Won-Seob;Suh, Dong-Soo;Park, Moon-Ki
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제2권1호
    • /
    • pp.79-84
    • /
    • 1998
  • The rates of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1-propanol (AMP) were measured using a semibatch stirred vessel with a plane gas-liquid interface at $25^{\circ}C.$ The absorption rates under the fast reaction regime were analysed using chemical absorption theory. The reaction was found to be first order with respect to both $CO_2$ and the amine.

  • PDF

탄소격리기술 중 화합 흡수법의 최근 연구 동향과 공정 시스템 공학의 역할 (Recent Research Trends of Chemical absorption in CCS(Carbon dioxide Capture and Storage) and the role of Process Systems Engineering)

  • 김영황;류준형;이인범
    • Korean Chemical Engineering Research
    • /
    • 제47권5호
    • /
    • pp.531-537
    • /
    • 2009
  • 무분별한 화석연료 사용에 따른 온실가스 배출의 영향으로 지구 온난화 현상과 이와 연계된 환경 재해들이 발생하고 있다. 대표적 온실가스인 이산화탄소를 방출하지 않고 포집하여 저장하는데 관련된 일련의 기술들을 CCS(carbon dioxide capture and storage)라 하여 최근 매우 큰 주목을 받고 있다. CCS 기술 중에서 화학 흡수법(chemical absorption)은 대규모 처리가 가능하다는 측면에서 그 중에서 가장 많이 상용화된 기술이다. 하지만 발생하는 이산화탄소를 경제적으로 처리할 수 있기까지는 아직도 많은 부분들을 개선할 필요가 있다. 본 논문에서는 공정 시스템 공학 측면에서 화학 흡수법에 대하여 최근 연구 동향을 살펴보고 향후 연구 방향에 대해 살펴 보고자 한다.

Absorption of Carbon Dioxide into Aqueous AMP Solutions

  • Won Seob So;Don
    • 한국환경과학회지
    • /
    • 제2권1호
    • /
    • pp.79-84
    • /
    • 1993
  • The rates of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1 propanol (AMP) were measured using a semibatch stirred vessel with a plane gas-liquid interface at $25^{\circ}C$. The absorption rates under the fast reaction regime were analysed using chemical absorption theory. The reaction was found to be first order with respect to both $CO_2$ and the amine.

  • PDF