• Title/Summary/Keyword: Carbon concentration

Search Result 3,784, Processing Time 0.026 seconds

Changes in Soil Physiochemcial Properties Over 11 Years in Larix kaempferi Stands Planted in Larix kaempferi and Pinus rigida Clear-Cut Sites (낙엽송과 리기다소나무 벌채지에 조성된 낙엽송 임분의 11년간 토양 물리·화학적 특성 변화)

  • Nam Jin Noh;Seung-hyun Han;Sang-tae Lee;Min Seok Cho
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.502-514
    • /
    • 2023
  • This study was conducted to understand the long-term changes in soil physiochemical properties and seedling growth in Larix kaempferi (larch) stands planted in clear-cut larch and Pinus rigida (pine) forest soils over an 11-year period after reforestation. Two-year-old bare-root larch seedlings were planted in 2009-2010 at a density of 3,000 seedlings ha-1 in clear-cut areas that harvested larch (Chuncheon and Gimcheon) and pine (Wonju and Gapyeong) stands. We analyzed the physiochemical properties of the mineral soils sampled at 0-20 cm soil depths in the planting year, and the 3rd, 7thand 11th years after planting, and we measured seedling height and root collar diameter in those years. We found significant differences in soil silt and clay content, total carbon and nitrogen concentration, available phosphorus, and cation exchangeable capacity between the two stands; however, seedling growth did not differ. The mineral soil was more fertile in Gimcheon than in the other plantations, while early seedling growth was greatest in Gapyeong. The seedling height and diameter at 11 years after planting were largest in Wonju (1,028 tree ha-1) and Chuncheon (1,359 tree ha-1) due to decreases in stand density after tending the young trees. The soil properties in all plantations were similar 11 years after larch planting. In particular, the high sand content and high available phosphorus levels (caused by soil disturbance during clear-cutting and planting) showed marked decreases, potentially due to soil organic matter input and nutrient uptake, respectively. Thus, early reforestation after clear-cutting could limit nutrient leaching and contribute to soil stabilization. These results provide useful information for nutrient management of larch plantations.

Seedling Age Effects on the Growth and Nutrient Uptake of Chamaecyparis obtusa Container Seedlings (편백 용기묘의 묘령에 따른 생장 및 양분 흡수 특성)

  • Deokgyo Jeong;Gyeongwon Baek;Choonsig Kim
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • This study was performed to determine the effects of Four seedling age classes ageon the characteristics of growth and nutrient uptake in Chamaecyparis obtusa container seedlings. Seedlings (1-1, 2-0, 2-1, and 2-2 seedlings) of C. obtusa grown in containers were harvested to measure specific leaf area, height (H)/root collar diameter (D) ratio, dry mass of aboveground (T)/root dry mass (R) ratio, and seedling quality index of seedlings. The specific leaf area was highest in 1-0 seedlings (30.48 cm2 g-1), whereas it decreased (from 28.62 cm2 g-1 to 23.59 cm2 g-1) with increasing seedling age. The H/D ratio increased with increasing seedling age (from 4.41 in 1-0 seedlings to 8.35 in 2-2 seedlings). The T/R ratio decreased as the seedling age increased (from 4.29 in the 1-0 seedling to 2.13 in the 2-1 seedling). The seedling quality index increased with increasing seedling age (from 0.10 for the 1-0 seedling to 3.06 for the 2-2 seedling). The carbon concentrations of seedling components (leaf, branches, stem, and roots) did not differ significantly with seedling age, whereas the nitrogen concentration of seedling components was the lowest in 2-1 seedlings, as no fertilizer was applied to discourage excessive growth of the seedlings. Phosphorus, potassium, and magnesium concentrations in 2-1 seedling components were not affected by the lack of fertilizer application. These results can be applied to determine the optimum morphological characteristics and nutrient management by seedling age in container- grown C. obtusa.

Environmental Management of Marine Cage Fish Farms using Numerical Modelling (수치모델을 이용한 해상어류가두리양식장의 환경관리 방안)

  • Kwon, Jung-No;Jung, Rae-Hong;Kang, Yang-Soon;An, Kyoung-Ho;Lee, Won-Chan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.4
    • /
    • pp.181-195
    • /
    • 2005
  • To study the effects of aquaculture activity of marine cage fish farms on marine environment, field researches including hydrography, sediment, benthos and trap experiment at the marine cage fish farms(Site A) around estuaries of Tongyeong city were carried out during June $26\~27$, 2003. A simulation using numerical model-DEPOMOD was conducted to predict the solid deposition from fish cage and to assess the probable solid deposition, and the efficiency of environmental management of marine cage fish farms was studied. The marine cage fish farms cultured mainly common sea bass (Lateolabrax japonicus), red seabream (Pagrus major), striped breakperch (Oplegnathus fasciatus) and black rockfish(Sebastes schlegeli), and total amount of cultured fish of the Site A were 23.1MT. The amount of husbandry fish by unit area(and volume) of the fish cage was $43.0kg\;m^{-2}(6.1kg\;m^{-3})$. The daily mean amounts of food fed by unit biomass and cage area were $30.8g\;kg^{-1}day^{-1},\;1.32kg\;m^{-2}day^{-1},$ respectively, at the Site A. The concentration of ORP of the sediment below the center at the Site A was -334.6 mV and the concentrations of AVS, COD, Carbon and Nitrogen were $0.43mg\;g^{-1}dry,\;17.75mg\;g^{-1}dry,\;10.19mg\;g^{-1}dry\;and\;3.49mg\;g^{-1}dry$, respectively. Capitella capitata was dominant benthic species which occupied $57.8\%$ of total species, and the Infaunal Trophical Index(ITI) was marked below 20 within 20 m distance from the edge of the Site A. The result of trap experiment, the solid deposition from the Site A was $34,485g\;m^{-2}yr^{-1}$ at 0 m from the center of the cage and $18,915g\;m^{-2}yr^{-1}$ at 42 m. From a model simulation, it was estimated that using a model simulation, the proportion of unfed food was $40\%$ at the Site A and the annual total amount of solid deposition was 63,401 accounting for $24.4\%$ of the annual total food fed at the Site A. The area solid deposition settled was estimated to be $8,450m^2$, which was about 16 times of the total area of fish cage at the Site A. And concerning ITI and abundance of benthos, the model predicted that sustainable solid flux at the Site A was below $10,000gm^{-2}yr^{-1}$. The percentage of food wasted was main element of solid deposition at the marine cage fish farms, and for minimizing solid deposition it is necessary to increase the efficiency of the food uptake. Based on the result of the model simulation, if the percentage of food wasted decreases to $10\%$ from the current $40\%$, then the solid deposition could decrease to a half. In addition, it was predicted that if farmers use EP pellets as food fed instead of MP and fish trash, solid deposition could decrease by $57\%$. Also this study proposes that the cage facility ratio of the licensed area be decreased to less than $5\%$ to minimize the sediment pollution.

Studies on the physio-chemical properties and the cultivation of oyster mushroom(Pleurotus ostreatus) (느타리버섯의 생리화학적성질(生理化學的性質) 및 재배(栽培)에 관(關)한 연구(硏究))

  • Hong, Jai-Sik
    • Applied Biological Chemistry
    • /
    • v.21 no.3
    • /
    • pp.150-184
    • /
    • 1978
  • Nutritional characteristics and physio-chemical properties of mycelial growth and fruitbody formation of oyster mushroom(Pleurotus ostreatus)in synthetic media, the curtural condition for the commerical production in the rice straw and poplar sawdust media, and the changes of the chemical components of the media and mushroom during the cultivation were investigated. The results can be summarized as follows: 1. Among the carbon sources mannitol and sucrose gave rapid mycelial growth and rapid formation of fruit-body with higher yield, while lactose and rhamnose gave no mycelial growth. Also, citric acid, succinic acid, ethyl alcohol and glycerol gave poor fruit-body formation, and acetic acid, formic acid, fumaric acid, n-butyl alcohol, n-propyl alcohol and iso-butyl alcohol inhibited mycelial growth. 2. Among the nitrogen sources peptone gave rapid mycelial growth and rapid formation of fruit-body with higher yield, while D,L-alanine, asparatic acid, glycine and serine gave very poor fruit-body formation, and nitrite nitrogens, L-tryptophan and L-tyrosine inhibited mycelial growth. Inorganic nitrogens and amino acids added to peptone were effective for fruit-body growth, and thus addition of ammonium sulfate, ammonium tartarate, D,L-alanine and L-leucine resulted in about 10% increase fruit-body yield. L-asparic acid about 15%, L-arginine about 20%, L-glutamic acid, and L-lysine about 25%. 3. At C/N ratio of 15.23 fruit-body formation was fast, but the yield decreased, and at C/N ratio of 11.42 fruit-body formation was slow, but the yield increased. Also, at the same C/N ratio the higher the concentration of mannitol and petone, the higher yield was produced. Thus, from the view point of both yield of fruit-body and time required for fruiting the optimum C/N ratio would be 30. 46. 4. Thiamine, potassium dihydrogen phosphate and magnecium sulfate at the concentration of $50{\mu}g%$. 0.2% and 0.02-0.03%, respectively, gave excellent mycelial and fruit-body growth. Among the micronutrients ferrous sulfate, zinc sulfate and manganese sulfate showed synergetic growth promoting effect but lack of manganese resulted in a little reduction in mycelial and fruit-body growth. The optimum concentrati on of each these nutrients was 0.02mg%. 5. Cytosine and indole acetic acid at 0.2-1mg% and 0.01mg%, respectively, increased amount of mycelia, but had no effect on yield of fruit-body. The other purine and pyrimidine bases and plant hormones also had no effect on mycelial and fruit-belly yield. 6. Illumination inhibited mycelial growth, but illumination during the latter part of vegetative growth induced primordia formation. The optimum light intensity and exposure time was 100 to 500 lux and 6-12 hours per day, respectively. Higher intensity of light was injurous, and in darkness only vegetative growth without primordia formation was continued. 7. The optimum temperature for mycelial growth was $25^{\circ}C$ and for fruit-body formation 10 to $15^{\circi}C$. The optimum pH range was from 5.0 to 6.5. The most excellent fry it-body formation were produced from the mycelium grown for 7 to 10 days. The lesser the volume of media, the more rapid the formation of fruit-body; and the lower the yield of fruit-body; and the more the volume of media, the slower the formation of fruit-body, and the higher the yield of fruit-body. The primordia formation was inhibited by $CO_2$. 8. The optimum moisture content for mycelial growth was over 70% in the bottle media of rice straw and poplar sawdust. 10% addition of rice bran to the media exhibited excellent mycelial growth and fruit-body formation, and the addition of calciumcarbonate alone was effective, but the addition of calcium carbonate was ineffective in the presence of rice bran. 9. In the cultivation experiments the total yield of mushroom from the rice straw media was $14.99kg/m^2$, and from the sawdust media $6.52kg/m^2$, 90% of which was produced from the first and second cropping period. The total yield from the rice straw media was about 2.3 times as high as that from the sawdust media. 10. Among the chemical components of the media little change was observed in the content of ash on the dry weight basis, and organic matter content decreased as the cultivation progressed. Moisture content, which was about 79% at the time of spawning, decreased a little during the period of mycelial propagation, after which no change was observed. 11. During the period from spawning to the fourth cropping about 16.7% of the dry matter, about 19.3% of organic matter, and about 40% of nitrogen were lost from the rice straw media; about 7.5% of dry mallet, about 7.6% of organic matter, and about 20% of nitrogen were lost from the sawdust media. For the production of 1kg of mushroom about 232g of organic matter and about 7.0g of nitrogen were consumed from the rice straw media; about 235g of organic matter and about 6.8g of nitrogen were consumed from the sawdust media, 1㎏ of mushroom from either of media contains 82.4 and 82.3g of organic matter and 5.6 and 5.4g of nitrogen, respectively. 12. Total nitrogen content of the two media decreased gradually as the cultivation progressed, and total loss of insoluble nitrogen was greater than that of soluble nitrogen. Content of amino nitrogen continued to increase up to the third cropping time, after which it decreased. 13. In the rice straw media 28.0 and 13.8% of the total pentosan and ${\alpha}$-cellulose, respectively, lost during the whole cultivation period was lost during the period of mycelial growth; in the sawdust media 24.1 and 11.9% of the total pentosan and ${\alpha}$-cellulose, respectively, was lost during the period of mycelial growth. Lignin content in the media began to decrease slightly from the second cropping time, while the content of reduced sugar, trehalose and mannitol continued to increase. C/N ratio of the rice straw media decreased from 33.2 at spawining to 30.0 at ending; that of the sawdust media decreased from 61.3 to 60.0. 14. In both media phosphorus, potassium, manganese and zinc decreased, at magnesium, calcium and copper showed irregular changes, and iron had a tendency to be increased. 15. Enzyme activities are much higher in the rice straw media than in the sawdust media. CMC saccharifying and liquefying activity gradually increased from after mycelial propagation to the second cropping, after which it decreased in both media. Xylanase activity rapidly and greatly increased during the second cropping period rather than the first period. At the start of the third cropping period the activity decreased rapidly in the rice straw media, which was not observed in the sawdust media. Protease activity was highest after mycelial propagation, after which it gradually decreased. The pH of the rice straw media decreased from 6.3 at spawning to 5.0 after fourth cropping; that of the sawdust media decreased from 5.7 to 4.9. 16. The contents of all the components except crude fibre of the mushroom from the rice straw media were higher than those from the sawdust media. Little change was observed in the content of the components of mushroom cropped from the first to the third period, but slight decrease was noticed at the fourth cropping.

  • PDF