• Title/Summary/Keyword: Carbon biomass

Search Result 893, Processing Time 0.024 seconds

Design of Database and System for Application of Forest Biomass (산림바이오매스 활용을 위한 데이터베이스 및 시스템 설계)

  • Lee, Hyun Jik;Koo, Dae Soung;Ru, Ji Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.13-20
    • /
    • 2013
  • Due to the global warming, international agreements have been propelled by industrialized countries. These days, there are various studies and projects to reduce the carbon emission quantity in South Korea, because South Korea is a strong candidate for a newly industrialized nation by Kyoto Protocol. Therefore, this study arranges plans to create various thematic map by producing database that can manage various datum based on grid spatial objects to manage quantity of forest biomass and carbon dioxide. Moreover, this study designs a system to create forest biomass by using the best method of calculation with LiDAR data and KOMPSAT-2 satellite images. In addition, this study designs a biomass monitoring system for public institutions to register biomass, suggesting actual plans to extract, manage, and utilized forest biomass.

A Study on the Source Profile Development for Fine Particles (PM2.5) Emitted from Biomass Burning (Biomass-burning에서 배출되는 미세입자 (PM2.5)의 배출원 구성물질 성분비 개발에 관한 연구)

  • Kang, Byung-Wook;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.4
    • /
    • pp.384-395
    • /
    • 2012
  • This study was performed to develop the source profiles for fine particles ($PM_{2.5}$) emitted from the biomass burning. The multi-method research strategy included a usage of combustion devices such as field burning, fireplace, and residential wood burning to burn rice straw, fallen leaves, pine tree, and oak tree. The data were collected from multiple sources and measured water-soluble ions, elements, elemental carbon (EC), and organic carbon (OC). From this study, it turned out that OC (34~67%) and EC (1.2~39%) are the major components emitted from biomass burning. In the case of burning rice straw at field burning, OC (66.6%) was the most abundant species, followed by EC (4.3%), $Cl^-$ (3.6%), Cl (2.1%), and $SO^{2-}_4$(1.9%). Burning rice straw, fallen leaves, pine tree, and oak tree at fireplace, the amount of OC was 58.5%, 52.7%, 52.5%, and 61.2%, and that of EC was 1.2%, 18.4%, 36.5%, and 2.7%, respectively. The ratio of OC for the burning of pine tree and oak tree from the residential wood burning device was 56.9% and 34.3%, and that of EC was 25% and 38.6%, respectively. Applying the measured data with respect to the proportion of components emitted from biomass burning to reference model, it turned out that self-diagnosed result was appropriate level, and the result based on the model is in highly corresponding to actual timing of biomass burning.

The Biomass Pre-treatment Effect on the Combustion Characteristics of Coal and Biomass Blends (바이오매스 전처리 기술에 따른 혼소 특성에 관한 실험적 연구)

  • KIM, JONG-HO;PARK, KYEONG-HOON;KIM, GYEONG-MIN;PARK, KYEONG-WON;JEONG, TAE-YONG;LEE, YOUNG-JOO;JEON, CHUNG-HWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Fuel blend technique is one of the most effective way of using biomass to replace the coal. Many studies on combustion characteristics with coal and biomass blends have been conducted. In this study, char reactivity and emission characteristics of coal (Suek) and biomass (EFB) blends has been investigated by TGA and DTF to evaluate the applicability of the pre-treated (torrefaction, ash removal technology) EFB to pulverized coal boiler. In all blending cases, char reactivity improved as the blending ratio increases (10, 20, and 30%), especially torrefied EFB blended at 30%. Also, unburned carbon decreased as the blending ratio increases in all types of EFB. NOx emission showed the increase and decrease characteristics according to the content of fuel-N of raw EFB and torrefied EFB. But the amount of NOx emission at ashless EFB blends is greater than that of Suek despite of lower fuel-N. It indicated that co-firing effect of using the pretreatment biomass fuel is relatively better than those of the untreated biomass fuel about char reactivity and emission characteristics.

Comparison for Torrefaction Properties and Combustion Behaviors of Several Biomass Materials (바이오매스 물질에 따른 반탄화 특성 및 연소 거동)

  • Ryu, Geun-Yong;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.30 no.4
    • /
    • pp.46-53
    • /
    • 2021
  • Biomass can be considered as chemical energy obtained from nature, and includes all living organisms such as plants, animals, and microorganisms. Biomass is eco-friendly, is easily obtainable from the environment, and can be recycled without special treatment processes. Biomass can also be converted into bioenergy fuel through pyrolysis and fermentation. Therefore, it has been considered as a renewable energy source, which prevents the depletion of natural resources such as fossil fuels. In this study, torrefaction to increase the carbon content in various types of biomass sources (sawdust, rice straw, rice bristles, coffee ground, and waste wood) was conducted under an inert atmosphere and at a temperature of 523~573K. The possibility of using torrefied biomass as an alternative to solid fuel for industrial purposes was analyzed by examining the carbon concentration and combustion behaviors.

Combustion Technology for Low Rank Coal and Coal-Biomass Co-firing Power Plant (저급탄 석탄화력 및 석탄-바이오매스 혼소 발전을 위한 연소 기술)

  • Lee, Donghun;Ko, Daeho;Lee, Sunkeun;Baeg, Guyeol
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.129-132
    • /
    • 2013
  • The low rank coal combustion and biomass-coal co-firing characteristics were reviewed on this study for the power plant construction. The importance of using low rank coal(LRC) for power plant is increasing gradually due to power generation economy and biomass co-firing is also concentrated as power source because it has carbon neutral characteristics to reduce green-house effect. The combustion characteristics of low rank coal and biomass for a 310MW coal firing power plant and a 100MW biomass and coal co-firing power plant were studied to apply into actual power plant design and optimized the furnace and burner design.

  • PDF

Study on Torrefaction Characteristics of Solid Biomass Fuel and Its Combustion Behavior (바이오매스 고형연료의 반탄화 특성 및 반탄화물의 연소특성에 관한 연구)

  • Lee, Weon Joon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.86-94
    • /
    • 2015
  • Torrefaction is a thermochemical process proceeded at the temperature around $250^{\circ}C$ in an inert gas condition. By torrefaction, the hemicellulose portions contained in biomass are broken down to change into the volatile gas which is removed from biomass eventually. The main purpose of biomass torrefaction is to improve the energy density of the biomass to minimize the transport energy consumption, though the flammability can be elevated for transportation. In this study two types of solid biomass fuel, waste wood and rice straw, were torrefied at various temperature range from $200^{\circ}C$ to $300^{\circ}C$ to evaluate the torrefied biomass characteristics. In addition torrefied biomass were tested to evaluate the combustion characteristics using TGA (Thermogravimetric Analysis). After the torrefaction of biomass, the C/H (carbon to hydrogen ratio) and C/O (carbon to oxygen ratio) were measured for aquisition of bio-stability as well as combustion pattern. Generally C/H ratio implies the soot formation during combustion, and the C/O ratio for bio-stability. By torrefaction temperature at $300^{\circ}C$, C/H ratio and C/O ratio were increased by two times for C/H and three times for C/O. The torrefied biomass showed similar TGA pattern to coal compared to pure biomass; that is, less mass decrease at lower temperature range for torrefied biomass than the pure biomass.

A Study of Estimation of Forest Ecosystem Carbon Storage in Gyeryongsan National Park, Korea (계룡산 국립공원 산림생태계의 탄소축적량 산정에 관한 연구)

  • Jang, Ji-Hye;Yi, Joon-Seok;Jeong, Ji-Sun;Song, Tae-Young;Lee, Kyengjae;Suh, Sang-Uk;Lee, Jaeseok
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.319-327
    • /
    • 2014
  • Understanding and quantifying of carbon storage in ecosystem is very important factor for predicting change of global carbon cycle under the global climate change. We estimated total ecosystem carbon in Gyeryongsan National Park with naturally well preserved ecosystem in Korea. Vegetation of Gyeryongsan National Park was classified with mainly four communities with Quercus mongolica (1,743.5 ha, 38.0%), Quercus variabilis (1,174.0 ha, 25.6%), Quercus serrata (971.9 ha, 21.2%), Pinus densiflora (695.2 ha, 15.2%). Biomass and soil carbons were calculated from biomass allometric equations based on the DBH and carbon contents of soil and litter collected in quadrat in each community. The tree biomass carbon was in Quercus variabilis ($130.1tCha^{-1}$), Pinus densiflora ($111.1tCha^{-1}$), Quercus mongolica ($76.2tCha^{-1}$), Quercus serrata ($39.0tCha^{-1}$). Soil carbon storage was in Quercus mongolica ($159.7tCha^{-1}$), Quercus serrata ($121.0tCha^{-1}$), Pinus densiflora ($110.5tCha^{-1}$), Quercus variabilis ($90.8tCha^{-1}$). Ecosystem carbon storage was Pinus densiflora ($239.9tCha^{-1}$), Quercus mongolica ($235.9tCha^{-1}$), Quercus variabilis ($226.0tCha^{-1}$), Quercus serrata ($165.9tCha^{-1}$), total amount was $867.7tCha^{-1}$. The area of each vegetation carbon storage was Quercus mongolica ($411,200tCha^{-1}$), Quercus variabilis ($265,300tCha^{-1}$), Pinus densiflora ($166,800tCha^{-1}$), Quercus serrata ($161,200tCha^{-1}$) and the total ecosystem carbon amount estimated $1,045,400tCha^{-1}$ at Gyeryongsan National Park. Theses results indicate that different in naturally well preserved ecosystem.

The Role of Heterotrophic Protists in the Planktonic Community of Kyeonggi Bay, Korea

  • Lee, Won-Je;Choi, Joong-Ki
    • Journal of the korean society of oceanography
    • /
    • v.35 no.1
    • /
    • pp.46-55
    • /
    • 2000
  • In order to understand the role of heterotrophic protists in the coastal waters off Inchon, abiotic and biotic factors were measured from January 1992 to February 1993. Microbial carbon biomass (mean212.9$^{\pm}$119.1 $^{\mu}$gC/1) was composed of 4.2% bacteria, 0.3% cyanobacteria, 12.l% autotrophic nanoflagellates, 6.6% heterotrophic nanoflagellates, 5.8 heterotrophic ciliates and 71.0% diatom and Mesodinium spp. The carbon biomass of heterotrophic protists (heterotrophic nanoflagellates and ciliates) was highest in October 1992 (mean 37.8$^{\pm}$22.5 $^{\mu}$gC/1), and was low in August 1992 (mean 21.2$^{\pm}$10.8 $^{\mu}$gC/1) and in February 1993 (mean 19.5$^{\pm}$6.4 $^{\mu}$gC/1). However, the contribution of heterotrophic protists to total microbial carbon biomass was higher in January 1992 and February 1993 (about 21%) when the phytoplankton was dominated by nanoplankton than in August and October (about 9%) when large diatoms occurred in large numbers. This study suggests that in Kyeonggi Bay heterotrophic protists might play a more important role as prey for zooplankton and as consumers of bacteria & small phytoplankton in less productive seasons (especially winter) than in productive seasons (autumn), and that the classic trophic pathway from diatoms through copepods to fish might be dominant nearly every season.

  • PDF

Hydrogen Production Technology (수소생산기술현황)

  • Joo, Oh-Shim
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.688-696
    • /
    • 2011
  • Hydrogen is one of the few long-term sustainable clean energy carriers, emitting only water as by-products during its combustion or oxidation. The use of fossil fuels to produce hydrogen makes large amount of carbon dioxide (>7 kg $CO_{2}$/kg $H_{2}$) during the reforming processes. Hydrogen production can be environmentally benign only if the energy and the resource to make hydrogen is sustainable and renewable. Biomass is an attractive alternative to fossil fuels for carbon dioxide because of the hydrogen can be produced by conversion of the biomass and the carbon dioxide formed during hydrogen production is consumed by biomass generation process. Hydrogen production using solar energy also attracts great attention because of the potential to use abundance natural energy and water.

Overview of Coffee Waste and Utilization for Biomass Energy Production in Vietnam

  • Thriveni, Thenepalli;Kim, Minsuk;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.76-83
    • /
    • 2017
  • In this paper, the carbon resources recycling of the overview of coffee waste generation in Vietnam. Since few years, there has been a significant research studies was done in the areas of coffee waste generation areas and also waste water generation from coffee production. The coffee residue (solid) and waste water (liquid) both are caused the underground water contamination and also soil contamination. These residues contain high organic matter and acid content leads to the severe threat to environment. In second stage of coffee production process, the major solid residue was generated. Various solid residues such as spent coffee grounds, defective coffee beans and coffee husks) pose several environmental concerns and specific problems associated with each type of residue. Due to the unlimited usage of coffee, the waste generation is high. At the same time, some researchers have been investigated the spent coffee wastes are the valuable sources for various valuable compounds. Biodiesel or biomass productions from coffee waste residues are the best available utilization method for preventing the landfill problems of coffee waste residues.