• Title/Summary/Keyword: Carbon Rod

Search Result 154, Processing Time 0.029 seconds

Fabrication of Micro Carbon Structures and Patterns with Laser-assisted Chemical Vapor Deposition (레이저 국소증착을 통한 미세 탄소구조물 및 패턴 제조)

  • 정성호;김진범;이선규;이종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.914-917
    • /
    • 2002
  • Fabrication of micro carbon structures and patterns using laser-assisted chemical vapor deposition is studied. Argon ion laser and ethylene were used to grow micro carbon rod through pyrolytic decomposition of the reaction gas. The influence of reaction gas pressure and incident laser power on the diameter and growth rate of the micro carbon rod was experimentally investigated. The diameter of micro carbon rods increases linearly with respect to the laser power but is almost independent of the reaction gas pressure. Growth rate of the rod changes little with gas pressure when the laser power remains below 1W. When the carbon rod was grown at near threshold laser power, a very smooth surface is obtained on the rod. By continuously moving the focusing lens in the direction of growth, a micro carbon rod with a diameter of 28 ${\mu}{\textrm}{m}$ and aspect ratio of 100 was fabricated.

  • PDF

Growth Characteristics of Micro Carbon Structures Fabricated by Laser-Assisted Chemical Vapor Deposition (레이저 국소증착법에 의한 탄소 미세 구조물의 제조시 성장특성에 관한 연구)

  • Kim, Jin-Beom;Lee, Seon-Gyu;Lee, Jong-Hyeon;Jeong, Seong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.106-115
    • /
    • 2002
  • Growth characteristics of micro carbon structures fabricated by laser-assisted chemical vapor deposition are studied. Argon ion laser and ethylene were used as the energy source and reaction gas, respectively, to grow micro carbon rod through pyrolytic decomposition of the reaction gas. Experiments were performed at various conditions to investigate the influence of process parameters on growth characteristics such as the diameter or growth rate of the micro carbon rod with respect to reaction gas pressure and incident laser power. Reaction gas pressure in experiments ranges from 200 to 600Torr and the incident laser power from 0.3 to 3.8W. For these conditions, the diameter of the rod increases linearly with respect to the laser power but is almost independent of the reaction gas pressure. Growth rate of the rod changes little with gas pressure when the laser power remains below IW. For a constant reaction gas pressure, the growth rate increase with Increasing laser power, but the rate of increase decreases gradually, implying that the chemical vapor deposition condition changes from a kinetically-limited regime to a mass-transport-limited regime. When the carbon rod was grown at near threshold laser power, a very smooth surface is obtained on the rod. By continuously moving the focusing lens in the direction of growth, a micro carbon rod with a diameter of 287${\mu}{\textrm}{m}$ and aspect ratio of 100 was fabricated..

The Fatigue behavior of strengthened bridge deck with Carbon Fiber Rod (탄소섬유 Rod로 성능향상된 교량 바닥판의 피로거동)

  • 심종성;김민수;김영호;주민관
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.313-318
    • /
    • 2002
  • The use of carbon fiber rods is a promising technology of increasing flexural and shear strength of deficient reinforced concrete members. The purpose of this experimental study is to investigate the fatigue behavior and strengthening effects of the strengthened bridge deck with isotropic and othortropic carbon fiber rod. This study shows a fatigue loading, compliance and S-N Curve between strengthened isotropically and othortropically. Then estimate the effective fatigue behavior of RC slab using composite rods that are inserted in high special purposed polymer mortar.

  • PDF

The Study on Flexural Behavior of Reinforced Concrete Beams Strengthened with the Carbon Fiber Rod (탄소섬유 Rod로 성능향상된 R/C보의 휨 거동 연구)

  • 심종성;문도영;김영호;김동희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.611-616
    • /
    • 2002
  • The concrete beam is quickly required to be replaced or strengthened due to decreasing load carrying capacity. Flexural tests on 3.1m long reinforced concrete beams with carbon-fiber rod are reported. The selected experimental variable is the method of the anchoring beam. The effects of this variable in overall behavior are discussed. This paper considered relation of load-displacement and load-strain. The maximum load was increased to the static behavior of the R/C beam strengthened with CFR rod. The results indicated generally that the flexural strength of strengthening beam was increased. It was required a proper anchorage system and can be led the ductility of beams of a carbon-fiber rod.

  • PDF

Assessment of Ductility for the RC Piers with Transverse Reinforcement and Application of Carbon-Fiber Red (횡방향 구속철근의 배근방법에 따른 철근콘크리트 교각의 연성 평가 및 탄소섬유 ROD의 적용)

  • 이영호;이학은
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.8-15
    • /
    • 2002
  • This paper presents a study carried out for the seismic capacity in reinforced concrete(RC) piers by the confinement effect of transverse reinforcement as such a hooked-tied, welded-tied and spiral reinforcement. In order to assess the seismic capacity with transverse reinforcement, experiment리 and analytical methods were adopted. A RC column survey was conducted based on eight one-fourth scale single circular column specimens designed and tested under slow horizontal cyclic loads. Two cases were analyzed. The confinement effect of concrete by transverse reinforcement is considered not in Case 1 but in Case 2. Also, we studied the propriety of making use of the method in which a carbon fiber rod replace spiral reinforcement in RC piers. In experimental tests, a welded-tied and spiral reinforcement has a good seismic capacity, but a carbon fiber rod presents low ductility in comparison with a hooked-tied reinforcement. In an analytical study, displacement ductility is approximate to the experimental result because of considering the confinement effect of the transverse reinforcement. Even if the confinement effect of the transverse reinforcement is considered, the analytical results for ductility of the specimens with welded-tied and spiral reinforcement show an excessive underestimation of the experimental results.

Comparative Analysis on Ground Impedance for a Carbon Block and a Copper Rod (탄소블록과 동봉의 접지임피던스 비교 분석)

  • Seo, Jae-Suk;Park, Hee-Chul;Kil, Gyung-Suk;Oh, Jae-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.472-477
    • /
    • 2013
  • This paper carried out the comparative analysis on ground impedance of a carbon block and a copper rod. Two types of grounding electrode were compared ; a carbon block (L : 1 m, ${\Phi}$ : 245 mm) buried at a depth of 0.8 m and a three-linked copper rod (L : 1 m, ${\Phi}$ : 10 mm) of equilateral triangles with 1 m spacing. Ground impedance depending on applied current source was evaluated by the application of a sine wave current with 60 Hz ~ 3.5 MHz, a fast-rise pulse with rising time of 200 ns, a standard lightning impulse of $8/20{\mu}s$ and a 600 Hz square wave. Ground impedance for both electrodes were almost the same value below 100 kHz, and increased rapidly afterwards. The maximum ground impedance appeared $400{\Omega}$ at around 1.5 MHz. Ground impedance of the carbon block was lower at the square wave and was higher at fast-rise pulse than that of the copper rod. Also, ground impedance as ages showed no difference for the last 8 months. From the results, it is likely that ground performance for both electrodes shows no difference against commercial frequency and lightning impulse current, while the copper rod shows better performance against a fast-rise pulse with rise-time of a few hundred ns.

A Study on the Machining Charcterisitics of Milling of cylinderical Rod Materials for Passenger Car (승용차용 CYLINDER ROD 소재의 밀링 적삭 특성 연구)

  • 채왕석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.143-148
    • /
    • 1996
  • In this paper, we have studied internal quality including chemical compositions, microscopic structure and nonmetalic inclusion of test materials. We have analyzed dynamic characteristics of cutting force of milling including tensile strength value hardness etcs. Test materials are used the tempered carbon steel and the non-tempered carbon steel. The obtained results are as follows: 1.In analyzing internal quality, the tempered carbon steel have typical martensite structure and the non-tempered carbon steel have ferrite+pearlite structure. 2.Yield strength, tensile strength and hardness value are in the non-tempered carbon steel but elongation is maximum value in the tempered carbon steel. 3.Cutting force is smaller non-tempered carbon steel than tempered carbon steel when feed speed and depth of cut is constant. 4.Cutting force is smaller to the tempered carbon steel and smaller non-tempered carbon steel than tempered carbon steel when cutting conditions

  • PDF

Electrical Properties of Yarned Carbon Nanotube Fiber Resistors (Yarned CNT Fiber 저항체의 전기적 특성)

  • Lim, Youngtaek;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.59-62
    • /
    • 2017
  • CNT (carbon nanotube) resistors with low resistance and negative TCR (temperature coefficient of resistance) were fabricated with yarned CNT (carbon nanotube) fibers. The CNT fibers were prepared by yarning CNTs grown on the silicone substrate by CVD (chemical vapor deposition) method. The CNT resistors were fabricated by winding CNT fibers on the surface of ceramic rod. Both metal terminals were connected with the CNT fiber wound on the ceramic rod. We measured electrical resistance and thermal stability with the number of CNT fibers wound. The CNT resistor system shows linearly decreased resistance with the number of CNTs wound on the ceramic rod and saturated at 20 strands. The CNT resistor system has negative TCR between $-1,000{\sim}-2,000ppm/^{\circ}C$ and stable frequency properties under 100 kHz.

Field Emission Properties of Carbon Nanotubes on Graphite Tip

  • Shin, Ji-Hong;Shin, Dong-Hoon;Song, Yenan;Sun, Yuning;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.383-383
    • /
    • 2011
  • Generally, field emitters can be categorized into two types according to the emitter shape, one is a planar field emitter and the other is a point emitter. The planar field emitter is used for displays, flat lamps and signage boards. On the other hands, the point field emitter is expected to play a significant role in x-ray sources and electron beam sources. Such applications of the point field emitters, especially, need large emission current and high emission stability with a small electron beam size. A few reports announced point emitters made by carbon nanotubes (CNTs). However, they still have suffered from poor reproducibility and low emission current. Here, we demonstrated high performance CNT point emitters by attaching CNTs onto graphite rod. Graphite rod exhibited good electrical conductivity and chemical stability. In this method, the shape of the point emitter could be easily controlled by changing the length and diameter of the graphite rod. The CNT point emitter showed emission current over 1 mA at an applied electric field of 1.4 V/${\mu}m$. We consider that the stable emission performance is attributed to the stable contact between CNTs and graphite rod.

  • PDF

A Basic Study on a New Type Particulate Emission Control Means of a Power Station Using a Micro-Gap and a Pulse Discharge (Micro-Airgap Discharge Phenomena) (초미소간격(超微小間隔)과 극단(極端)펄스방전(放電)을 이용(利用)한 미연소탄소립자(未燃燒炭素粒子) 소각제거기술(燒却除去技術) 개발기초연구(開發基礎硏究)(I) (초미소간격(超微小間隔)의 방전현상(放電現象)))

  • Moon, Jae-Duk;Shin, Soo-Youn
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.605-608
    • /
    • 1993
  • Breakdown characteristics of a small rod-to-rod microairgap has been studied for obtain an optimum breakdown voltage and an airgap spacing to be used as an emission control means by the electrical arc-burning unburnt carbon particulates exhausted from a power station burner. It is found that the breakdown voltage at the rod-to-rod airgap spacing in the rang of $1{\sim}100{\mu}m$ decreased with decrease in the rod-to-rod airgap spacing. And there were no minimum breakdown voltage on a $V_b$-Pd characteristics which is known as the minimum voltage in Paschen's law in air atmosphere. Breakdown voltages of the airgap at the constant airgap spacing were $V_{b-dc}>V_{b-ac}>V_{b-pulse}$, and it was lowest for the pulse voltage applied. As a result, it is found that a pulse power was one of effective power compared with dc or ac to be used as such an unburnt carbon particulate emission control means and the airgap spacing became to several tens ${\mu}m$, then the breakdown voltages were down to several handreds voltages.

  • PDF