• Title/Summary/Keyword: Carbon Nanotube, CNT

Search Result 765, Processing Time 0.029 seconds

Performance Evaluation of Biofuel cell using Benzoquinone Entrapped Polyethyleneimine-Carbon nanotube supporter Based Enzymatic Catalyst (벤조퀴논 포집 폴리에틸렌이민-탄소나노튜브 지지체 기반 효소촉매의 바이오연료전지로서의 성능평가)

  • Ahn, Yeonjoo;Chung, Yongjin;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.258-263
    • /
    • 2017
  • In this study, we synthesized biocatalyst consisting of glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT) with addition of p-benzoquinone (BQ) that was considered anodic catalysts of enzymatic biofuel cell (EBC). For doing this, PEI/CNT supporter was bonded with BQ by physical entrapping method stemmed from electrostatic attractive force ([BQ/PEI]/CNT). In turn, GOx moiety was further immobilized on the [BQ/PEI]/CNT to form GOx/[BQ/PEI]/CNT catalyst. This catalyst has a special advantage in that the BQ that has been usually dissolved into electrolyte was immobilized on supporter. According to the electrochemical analysis, maximum current density of the GOx/[BQ/PEI]/CNT catalyst was 1.9 fold better than that of the catalyst that did not entrap BQ with the value of $34.16{\mu}A/cm^2$, verifying that catalytic activity of the catalyst was enhanced by adoption of BQ. Also, when it was used as anodic catalyst of the EBC, its maximum power density was 1.2 fold better than that of EBC using the catalyst that did not entrap BQ with the value of $0.91mW/cm^2$. Based on such results, it turned out that the GOx/[BQ/PEI]/CNT catalyst was promising and viable as anodic catalyst of EBC.

Conversion of DME to Light Olefins over Mesoporous SAPO-34 Catalyst Prepared by Carbon Nanotube Template (탄소 나노튜브 주형물질에 의해 제조된 메조 세공 SAPO-34 촉매상에서 경질 올레핀으로의 DME 전환 반응)

  • Kang, Eun-Jee;Lee, Dong-Hee;Kim, Hyo-Sub;Choi, Ki-Hwan;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.34-40
    • /
    • 2014
  • Mesoporous SAPO-34 catalyst was successfully synthesized by the hydrothermal method using carbon nanotube (CNT) as a secondary template. The effects of CNT contents (0.5, 1.5, 2.5, and 4.5 mol%) on catalytic performances were investigated. The synthesized catalysts were characterized with XRD, SEM, nitrogen physisorption isotherm and $NH_3$-TPD. Among the synthesized catalysts, SAPO-34 catalyst prepared by the addition of 1.5 mol% CNT (1.5C-SAPO-34) observed not only the largest amounts of mesopore volume but also acid sites. However, the mesopore volume was relatively decreased by further increasing of CNT contents due to the formation of small crystalline. The catalytic lifetime and the selectivity of light olefins ($C_2{\sim}C_4$) were examined for the dimethyl ether to olefins reaction. As a result, the 1.5C-SAPO-34 catalyst showed an improvement of ca. 36% in a catalytic lifetime and a better selectivity to light olefins as compared with the general SAPO-34 catalyst.

Electrical and Optical Properties According to Detachment and Bending of Carbon Nanotube-coated Transparent Tape (카본나노튜브 코팅된 투명 테이프의 탈착과 벤딩에 따른 전기 및 광학적인 특성)

  • Kyoung-Bo Kim;Jongpil Lee;Moojin Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.8
    • /
    • pp.35-42
    • /
    • 2023
  • Recently, electronic devices with bendable electronic devices based on flexible substrates are being sold, and therefore, the purpose of this study is to evaluate the possibility of flexible substrates of conductive transparent tapes. As a transparent electrode, carbon nanotube (CNT) was formed by the coating method developed by the research team, and samples coated up to 5 times were fabricated. The surface resistance and transmittance of the substrate were measured, and both resistance and transmittance decreased as the number of CNT coatings increased. After the tape was detached from the glass, the surface resistance slightly increased in all samples, and the transmittance increased by about 10% in all measured wavelength ranges because the glass was removed. Next, the tape coated with CNT twice was used to a bending test 20,000 times under the condition of a radius of curvature of 2 mm. The electrical and optical properties before and after bending did not change, which means that there was no change in CNT properties due to bending.

A Study on the Evaluation Method of Shielding Effectiveness using NFS in Near-Field Tests (근거리장에서 NFS를 사용한 차폐효율 평가방법에 관한 연구)

  • Park, Jungyeol;Song, Inchae;Kim, Boo-Gyoun;Kim, Eun-Ha
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.76-82
    • /
    • 2016
  • In this paper, we evaluated shielding effectiveness (SE) of carbon nanotube (CNT) film using near field scanning (NFS) in near field analysis. We adopted CNT film with deposit carbon density of 5% and thickness of 1mm for evaluation of shielding characteristic. Using a test coupon analogized to an actual IC package, we measured SE according to measuring position and SE according to distances between the CNT film and the test coupon. As a result, the measured SE in the near field varied with frequency. Especially, the measured electric field SE in the center of the test coupon is better than that of the measured edge point of the test coupon where it is affected by fringing effect. The results show that the measured SE in the near field is affected not only by frequency but also by measurement environment such as position and height of the probe and height of shielding film. In conclusion, we should choose proper methods for SE measurement considering interference distance in the electronic control system because there is little correlation between the proposed evaluation method in the near field and ASTM D 4935-10.

Fabrication and Sensing Characteristics of Multi-Walled Carbon Nanotube Gas Sensor for No2 Detection (이산화질소 감지용 다중벽 탄소나노튜브 가스센서의 제작 및 감응 특성)

  • 조우성;문승일;김영조;이윤희;주병권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.294-298
    • /
    • 2004
  • Carbon nanotubes(CNTs) were synthesized by thermal chemical vapor deposition(CVD) method. To fabricate CNT gas sensor, catalyst metal layer was deposited on microstructure. The CNT gas detecting layer was grown by thermal CVD method on the catalyst metal layer. In order to investigate the gas sensing characteristics of the fabricated CNT gas sensor, it was exposed in NO$_2$ gas and sensitivity, response, and recovery time were measured. As the result, this sensor has better reproductibility and faster recovery time than another CNT gas sensors.

Calculation of Field Enhancement Factor in CNT-Cathodes Dependence on Dielectric Constant of Bonding Materials

  • Kim, Tae-Sik;Shin, Heo-Young;Cho, Young-Rae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1092-1095
    • /
    • 2005
  • The effect of the dielectric constant (${\varepsilon}$) of bonding materials in screen-printed carbon nanotube cathode on field enhancement factor was investigated using the ANSYS software for high-efficient CNT-cathodes. The field enhancement factor increased with decreasing the dielectric constant and reaching a maximum value when the dielectric constant is 1, the value for a vacuum. This indicates that the best bonding materials for screen-printing CNT cathodes should have a low dielectric constant and this can be used as criteria for selecting bonding materials for use in CNT pastes for high-efficient CNT-cathodes

  • PDF

Preparation of Sheet with CNT for EMI Shielding and Its EMI Shielding Property (CNT가 함유된 전자파 차폐흡수시트의 제조 및 전자파 차폐특성)

  • Chae, Seong-Jeong;Cho, Bum-Rae;Hong, Byung-Pyo;Lee, Byoung-Soo;Byun, Hong-Sik
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.430-434
    • /
    • 2010
  • The sheet for electromagenetic interference (EMI) shielding was prepared with slurry made by the mixture of binder, methyl ethyl ketone, cyclohexanone and metal powder. We tried to enhance the shielding efficiency by adding carbon nanotube (CNT), which has known as highly conducting material. Surface and component analyses were carried out with SEM and EDS, respectively. The electric characteristics and EMI shielding efficiencies were measured with 4-point probe measurement and EMI efficiency measurement equipment. The sheet with 2% CNT addition showed the lowest electrical resistance, $13.13{\Omega}}{\cdot}cm$. It also showed the highest EMI shielding efficiency of 63 dB.

Strength of CNT Cement Composites with Different Types of Surfactants and Doses (분산제의 종류 및 사용량에 따른 CNT 보강 시멘트 복합체의 강도변화)

  • Ha, Sung-Jin;Kang, Su-Tae;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.99-107
    • /
    • 2015
  • This study was aimed to investigate the difference in strength of Carbon Nanotube (CNT) reinforced cement mortars with different types of surfactants and doses. In the experimental program, CTAB, SDBS and TX10 which were common surfactants adopted to improve CNTs dispersion in fabricating CNT composites in many industrial fields were included and superplasticizer which was revealed to be effective to disperse CNTs especially in CNT reinforced cementitious composites were added as well. Superplasticizer presented less strength reduction in cement mortar and more strength gain by adding CNTs among four types of surfactants. Higher dosage of superplasticizer caused lower strength of cement mortar. Adding CNTs of 0.4 wt.% or less to cement didn't show strength enhancement by adding CNTs but 0.8 wt.% of CNTs resulted in strengthening effect after all. Finally, a combination of 0.1 wt.% of CNTs, superplasticizer and sonication treatment could lead to strength improvement by adding CNTs in cement mortar.

A bio-sensor SoC Platform Using Carbon Nanotube Sensor Arrays (CNT 배열을 이용한 bio-sensor SoC 설계)

  • Chung, In-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.8-14
    • /
    • 2008
  • A fully CMOS-integrated carbon nanotube (CNT) sensor array is proposed. After the sensor chip is fabricated in commercial CMOS process, the CNTs network is formed on the top of the fabricated sensor chip through the room-temperature post-CMOS processes. When the resistance of the CNT is changed by the chemical reaction, the read-out circuit in the chip measures the charging time of the $R_{CNT}$-Capacitor. finally the information of measured frequency is converted to a digital code. The CMOS sensor chip was fabricated by standard 0.18um technology and the size of the $8{\times}8$ sensor array is $2mm{\times}2mn$. We have carried out an experiment detecting the biochemical material, glutamate, using this sensor chip. From the experiment the CMOS sensor chip shows the feasibility of sensor for the simultaneous detection of the various target materials.

Driving Characteristics of Flexible Reflective Display Using Carbon Nanotube Electrode (탄소나노튜브 전극을 이용한 플렉시블 반사형 디스플레이의 구동 특성)

  • Hwang, In-Sung;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.451-455
    • /
    • 2012
  • To compare an electrical and optical characteristics of indium tin oxide (ITO) and carbon nanotube (CNT) electrode on flexible and reflective display, we fabricate two charged particle-type display panels under the same panel condition of which the width of ribs is 10 ${\mu}m$, the cell size is $300{\mu}m{\times}300{\mu}m$, the q/m value of the white particles is -4.3 ${\mu}C/g$ and that for the black is +1.3 ${\mu}C/g$, and the cell gap is 75 ${\mu}m$, 125 ${\mu}m$, and 175 ${\mu}m$. We use plastic substrates coated with ITO and CNT electrode. To evaluate optical property, we measure a response time of particles using a laser and a photodiode. Threshold and driving voltages of CNT electrode according to the sheet resistance of 300, 600, 1,000 (ohm/sq) are compared with ITO electrode of 10 (ohm/sq). A response time of the CNT panel is similar to that of ITO panel, but the threshold and driving voltages of CNT panel are higher than that of ITO panel, inducing a large bombardment of the particles and shortening the lifetime of the panel. High difference of a threshold and a driving voltage of CNT panel will induce an particle clumping, resulting degradation of the panel. A bending radius of the fabricated CNT panel is 18 ${\mu}m$.