• Title/Summary/Keyword: Carbon Nanotube, CNT

Search Result 765, Processing Time 0.033 seconds

XPS Investigation and Field Emission Property of the Ar Plasma Processed Carbon Nanotube Films

  • Lee, Sun-Woo;Lee, Boong-Joo;Oda, Tetsuji
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.52-56
    • /
    • 2008
  • Carbon nanotube films were fabricated by the catalytic CVD method. Plasma processed time effects on the field emission property were studied. The atomic structure was observed by using X-ray photoelectron spectroscopy (XPS). The surface composition changes were observed on the plasma processed CNT films. The O1s/C1s signal ratio and the Fls/Cls signal ratio changed from 1.1 % to 24.65 % and from 0 % to 3.1 % with plasma process time, respectively. We could guess it from these results that the Ar plasma process could change the surface composition effectively. In the case of the original-CNT film, no carbon shift was observed. In the case of the Ar plasma processed CNT films, however the oxygen related carbon shifts were observed. This oxygen related carbon shift at higher binding energy implies the increment of amount of the oxygen. It's possible that the increment of these bonds between carbon and oxygen results in the improvement of field emission performance.

Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material (CNT를 첨가한 Silicon/Carbon 음극소재의 전기화학적 특성)

  • Jung, Min zy;Park, Ji Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.16-21
    • /
    • 2016
  • Silicon/Carbon/CNT composites as anode materials for lithium-ion batteries were synthesized to overcome the large volume change during lithium alloying-de alloying process and low electrical conductivity. Silicon/Carbon/CNT composites were prepared by the fabrication processes including the synthesis of SBA-15, magnesiothermic reduction of SBA-15 to obtain Si/MgO by ball milling, carbonization of phenolic resin with CNT and HCl etching. The prepared Silicon/Carbon/CNT composites were analysed by XRD, SEM, BET and EDS. In this study, the electrochemical effect of CNT content to improve the capacity and cycle performance was investigated by charge/discharge, cycle, cyclic voltammetry and impedance tests. The coin cell using Silicon/Carbon/CNT composite (Si:CNT=93:7 in weight) in the electrolyte of $LiPF_6$ dissolved in organic solvents (EC:DMC:EMC=1:1:1 vol%) has better capacity (1718 mAh/g) than those of other composition coin cells. The cycle performance of coin cell was improved as CNT content was increased. It is found that the coin cell (Si:CNT=89:11 in weight) has best capacity retension (83%) after 2nd cycle.

Influence of Surface Functional Group of Carbon Nanotubes for Applications in Electrochemical Capacitors

  • Park, Sul Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.480.2-480.2
    • /
    • 2014
  • Electrochemical capacitors have been the most strong energy storage devices due to high power density and long cycle stability. Pristine carbon nanotubes are promising electrode materials for excellent electrical conductivity and high specific surface area in electrochemical capacitor. However, the practical application of pristine carbon nanotubes was limited by the aggregation into bundles due to van der Waals force. In this research, we explained how multi-walled carbon nanotubes (MWCNT) functionalized by carboxyl, sulfonic, and amine groups (CNT-COOH, CNT-SO3H, CNT-NH2) to improve the performances of MWCNT. Functionalized CNTs showed two- to four-fold increase in capacitance over that of pristine CNTs, while maintaining reasonable cyclic stability. But, the CNT-COOH showed the lowest rate capability of 57% compared to 84%, 86% of CNT-SO3H and CNT-NH2. As demonstrated by the spectroscopic analysis, This reseach showed how surface functional group of carbon nanotubes change capacitor performances.

  • PDF

The development of complex electrode for fuel cell using CNT (CNT를 이용한 PEMFC 연료전지용 복합전극 개발)

  • Ok, Jinhee;Altalsukh, Dorjgotov;Rhee, Junki;Park, Sangsun;Shul, Yonggun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.135.2-135.2
    • /
    • 2010
  • Carbon nanotube(CNT) has been spotlighted as a promising candidate for catalyst support material for PEMFC (proton exchange membrane fuel cell). The considerable properties of CNT include high surface area, outstanding thermal, electrical conductivity and mechanical stability. In this study, to fully utilize the properties of CNTs, we prepared directly oriented CNT on carbon paper as a catalyst support in the cathode electrode. The CNT layer was prepared by a chemical vapor deposition(CVD) process. And the Pt particles were deposited on the CNT oriented carbon paper by impregnation and eletro-deposition method. The potential advantages of directly oriented CNT on carbon paper can include improved thermal and charge transfer through direct contact between the electrolyte and the electrode and enhanced exposure of Pt catalyst sites during the reaction.

  • PDF

Electroanalytical Applications Based on Carbon Nanotube/Prussian Blue Screen-printable Composite

  • Shim, Jun-Ho;Lee, Jae-Seon;Cha, Geun-Sig;Nam, Hak-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1583-1588
    • /
    • 2010
  • A single step fabrication process of carbon nanotube/Prussian Blue (CNT/PB) paste electrodes based on screen printing technology has been studied as an amperometric sensor for the determination of hydrogen peroxide and free chlorine. Compared to the classical carbon paste (CP) electrode, the CNT paste electrode greatly enhanced the response in the presence of hydrogen peroxide due to the electrocatalytic activity of the CNT. Based on the CNT/binder paste, PB was also incorporated into a network of CNT paste and characterized. The best electroanalytical properties of PB-mixed sensors to hydrogen peroxide were obtained with PB ratio of 10 wt % composition, which showed fast response time ($t_{90}{\leq}5$ s; 0.2 - 0.3 mM), low detection limit of 1.0 ${\mu}M$, good linear response in the range from $5.0{\times}10^{-5}$ - $1.0{\times}10^{-3}$ mol $L^{-1}$ ($r^2$ = 0.9998), and high sensitivity of -8.21 ${\mu}AmM^{-1}$. In order to confirm the enhanced electrochemical properties of CNT/PB electrode, the sensor was further applied for the determination of chlorine in water, which exhibited a linear response behavior in the range of 50 - 2000 ppb for chlorine with a slope of 1.10 ${\mu}Appm^{-1}$ ($r^2$ = 9971).

Carbon Nanotube-Copper Hybrid Thin Film on Flexible Substrate fabricated by Ultrasonic Spray Coating and Laser Sintering Process (초음파 스프레이 코팅과 레이저 소결 공정에 의해 유연 기판 표면에 형성된 탄소나노튜브-구리 하이브리드 박막)

  • Park, Chae-Won;Gwon, Jin-Hyeong;Eom, Hyeon-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.135-135
    • /
    • 2016
  • Recently flexible electrode materials have attracted attention in various electrical devices. In general, copper(Cu) is widely used electrical conductive material. However, Cu film showed drastically reduction of electrical conductivities under an applied tensile strain of 10%. These poor mechanical characteristics of Cu have difficulty applying in flexible electronic applications. In this study, mechanical flexibilities of Cu thin film were improved by hybridization with carbon nanotubes(CNTs) and laser sintering. First, thin carbon nanotube films were fabricated on a flexible polyethylene terephthalate(PET) substrate by using ultrasonic spray coating of CNT dispersed solution. After then, physically connected CNT-Cu NPs films were formed by utilizing ultrasonic spray coating of Cu nanoparticles dispersed solution on prepared CNT thin films. Finally, CNT-Cu thin films were firmly connected by laser sintering. Therefore, electrical stabilities under mechanical stress of CNT-Cu hybrid thin films were compared with Cu thin films fabricated under same conditions to confirm improvement of mechanical flexibilities by hybridization of CNT and Cu NPs.

  • PDF

Reliability Properties of Carbon Nanotube-filled Solderable Anisotropic Conductive Adhesives (탄소 나노튜브 함유 Solderable 이방성 도전성 접착제의 신뢰성 특성에 관한 연구)

  • Yim, Byung-Seung;Lee, Jeong Il;Kim, Jong-Min
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • In this paper, two types of assemblies using CNT-filled SACAs (with 0.03 wt% CNTs and without CNT) were prepared to investigate the influence of carbon nanotubes (CNTs) on the reliability properties of solderable anisotropic conductive adhesives (SACAs) with a low-melting-point alloy (LMPA). Two types of reliability test including thermal shock (TS: -55 to $125^{\circ}C$, 1000 cycles) and high-temperature and high-humidity (HTHH: $85^{\circ}C$, 85% RH, 1000 h) tests were conducted. The SACA assemblies with and without CNTs showed stable electrical reliability properties due to the formation of wide and stable metallurgical interconnection between corresponding metallizations by the molten LMPA fillers. Although the mechanical pull strength of CNT-filled SACA assemblies was decreased after thermal aging (because of the excessive layer growth and planarization of the IMCs), the CNT-filled SACA with 0.03wt% CNTs showed enhanced mechanical reliability properties compared with the SACA assemblies no CNTs. This enhancement in mechanical performance was due to the reinforcement effect of the CNTs. These results demonstrate that CNTs within the CNT-filled SACAs can improve the reliability properties of CNT-filled SACAs joints due to their superior physical properties.

Field Emission Characteristics of a CNT-FEA fabricated by Screen-printing of a Photo-sensitive CNT Paste (감광성 CNT 페이스트의 스크린 프린팅법을 이용한 CNT-FEA의 전계 방출 특성)

  • Kwon Sang-Jik;Lee Sang-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.75-80
    • /
    • 2006
  • We have fabricated a carbon nanotube field emission display(CNT-FED) panel with a 2 inch diagonal size using a screen printing method and in-situ vacuum sealing technology. The field emission properties of CNT FED panel with square-type CNT emitters. As results, the square-characterized and compared with those of the line-type CNT emitters. As results, the square-type CNT emitters showed much larger emission current and more stable I-V characteristics. Light emission started to be occurred at an electric field of 3.5 V/${\mu}m$ corresponding to the anode-cathode voltage of 700 V. The vacuum level inside of the in-situ vacuum sealed panel was obtained with $1.4 {\times} 10^{-5}$ torr. The sealed panel showed the similar I-V characteristics with the unsealed one and the uniform light emission with very high brightness at a current density of $243 {\mu}A/ cm^2$ obtained by the electric field of 10 V/${\mu}m$.

Fabrication of Transparent Ultra-thin Single-walled Carbon Nanotube Films for Field Emission Applications

  • Jang, Eun-Soo;Goak, Jung-Choon;Lee, Han-Sung;Kim, Myoung-Su;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.353-353
    • /
    • 2008
  • Carbon nanotubes (CNTs) are attractive for field emitter because of their outstanding electrical, mechanical, and chemical properties. Several applications using CNTs as field emitters have been demonstrated such as field emission display (FED), backlight unit (BLU), and X-ray source. In this study, we fabricated a CNT cathode using transparent ultra-thin CNT film. First, CNT aqueous solution was prepared by ultrasonically dispersing purified single-walled carbon nanotubes (SWCNTs) in deionized water with sodium dodecyl sulfate (SDS). To obtain the CNT film, the CNT solution in a milliliter or even several tens of micro-litters was deposited onto a porous alumina membrane through vacuum filtration process. Thereafter, the alumina membrane was solvated by the 3 M NaOH solution and the floating CNT film was easily transferred to an indium-tin-oxide (ITO) glass substrate of $0.5\times0.5cm^2$ with a film mask. The transmittance of as-prepared ultra-thin CNT films measured by UV-Vis spectrophotometer was 68~97%, depending on the amount of CNTs dispersed in an aqueous solution. Roller activation, which is a essential process to improve the field emission characteristics of CNT films, increased the UV-Vis transmittance up to 93~98%. This study presents SEM morphology of CNT emitters and their field emission properties according to the concentration of CNTs in an aqueous solutions. Since the ultra-thin CNT emitters prepared from the solutions show a high peak current density of field emission comparable to that of the paste-base CNT emitters and do not contain outgassing sources such as organic binders, they are considered to be very promising for small-size-but-high-end applications including X-ray sources and microwave power amplifiers.

  • PDF

Improved Surface Morphologies of Printed Carbon Nanotubes by Heat Treatment and Their Field Emission Properties

  • Lee, Hyeon-Jae;Lee, Yang-Doo;Cho, Woo-Sung;Kim, Jai-Kyeong;Lee, Yun-Hi;Hwang, Sung-Woo;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • v.7 no.2
    • /
    • pp.22-25
    • /
    • 2006
  • This paper presents heating process for obtaining standing carbon nanotube emitters to improve field-emission properties from the screen-printed multiwalled carbon nanotube (MWCNT) films. In an atmosphere with optimum combination of nitrogen and air for heat treatment of CNT films, the CNT emitters can be made to protrude from the surface. This allows for high emission current and the formation of very uniform emission sites without special surface treatment. The morphological change of the CNT film by this technique has eliminated additional processing steps, such as surface treatment which may result in secondary contamination and damage to the film. Despite its simplicity the process provides high reproducibility in emission current density which makes the films suitable for practical applications.