• Title/Summary/Keyword: Carbon Mixing

Search Result 692, Processing Time 0.025 seconds

Mixing Mechanism of Carbon Black (카본블랙의 혼합메카니즘에 관한 연구)

  • Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.26 no.4
    • /
    • pp.287-295
    • /
    • 1991
  • The mixing process with carbon black is important in the rubber industries. However, it is difficult to characterize the mixing mechanism of the carbon black. The mixing mechanism(distributive mixing and dispersive mixing) was discribed in this paper. The effect of fill factor on the mixing of the carbon black was studied. The dispersive mixing ability increases with increasing fill factor. However, the distributive mixing ability decreases with increasing fill factor. The effect of the carbon black content on the rheological property of the material was studied in this paper. The viscosity of the material increases with increasing the carbon black content. However, the elasticity of the matarial decreases with the carbon black content.

  • PDF

Influence of Mixing Procedure on Properties of Carbon Black-filled Natural Rubber Compounds

  • Park, Sung-Seen
    • Macromolecular Research
    • /
    • v.8 no.4
    • /
    • pp.192-198
    • /
    • 2000
  • Cure characteristics and physical properties of carbon black-filled natural rubber (NR) compounds depending on the mixing procedure were studied using the compounds with different pre-final mixing (FM-1) stages. Carbon master batch (MB) and first and second remitting (1RM and 2RM) stages were employed as the FM-1 stage. Bound rubber content of the FM compound decreased with increasing the mixing steps. This was due to the decrease of the molecular weight distribution of the polymer by the rubber chain scission during the mixing. The Mooney viscosity decreased with increasing the mixing steps. Cure characteristics of the compounds were found to be different with the mixing procedures. The cure times of the compound became slower by increasing the number of the mixing steps. This was explained by the length of rubber chain, the carbon black network, distribution of the curatives in the compound, and immobilization of the polymeric segments. Modulus and tensile strength of the vulcanizate did not show a specific trend with the mixing procedure. Fatigue life of the vulcanizate increased by increasing the mixing stages.

  • PDF

Influence of Mixing Procedure on Properties of Rubber Compounds Filled with Both Silica and Carbon Black (배합 공정이 실리카와 카본블랙으로 보강된 고무 배합물의 특성에 미치는 영향)

  • Joo, Chang-Whan;Kim, Dong-Chul;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.14-20
    • /
    • 2002
  • Silica-filled rubber compound needs longer mixing time compared to carbon black-filled one since it has poor dispersion or the filler. Influence of the mixing procedure on the properties of natural rubber compound filled with both silica and carbon black was studied. The discharge temperature of the master batch (MB) mixing was $150^{\circ}C$. The mixing time was longer when silica and carbon black were loaded separately than when loaded simultaneously. The mixing time was longer when silica was loaded first than when carbon black is loaded first. The compounds prepared by one MB step (conventional mixing) were compared with the compounds prepared by two MB steps (two-step mixing). Scorch times of the two-step mixing compounds were longer than those by the conventional mixing ones. Bound rubber contents of the formers were lower than those of the tatters. The two-step mixing vulcanizates had longer elongation at break, higher tensile strength, and better fatigue life.

Performance of the Negative Carbon Electrode Prepared with Graphitic Carbon and Nongraphitic Carbon Material in Lithium Ion Secondary Battery (흑연계 및 비흑연계 탄소로 조합된 리튬이온 이차전지의 탄소부극 특성)

  • Kim, Hyun-Joong;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1065-1069
    • /
    • 1998
  • This study was investigated to improve peformance of carbon negative electrode for lithium ion secondary battery. The carbon electrode was prepared by mixing with graphitic carbon material, natural graphite, and nongraphitic carbon material, petroleum cokes, which was heat-treated at $700^{\circ}C$ for l hour. Its electrochemical and charge-discharge characteristics were tested according to mixing ratio of different two types of carbon material. The carbon electrode prepared with various mixing ratio showed both charateristcs of two different types of carbon materials and the best characteristics as carbon electrode was demonstrated at mixing ratio of 1:1.

  • PDF

A study on determining the optimum mixing ratio of carbon source for anaerobic treatment (혐기성처리를 위한 탄소원의 최적 혼합비율 결정에 관한 연구)

  • 김은호;장성호
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.31-38
    • /
    • 1999
  • The purpose of this study were to determine the optimum mixing ratio of sewage sludge and papermill sludge as carbon source required to SRB in treating abandoned mine drainage with natural purification wetland. If mixing sewage sludge/papermill sludge 2.0 SO42- reduced 46.2%, and then 30% in mixing ratio 0.5.Because sewage sludge was faster biodegradability than papermill sludge, effluent SCOD was 40mg/L in mixing ratio 0.5, and after that was all but regular. pH and ORP were almost neutral and -160mV, but after that was all but regular and it indicated that SRB activity was suitable. Fe removal rate was 60% in mixing ratio 2.0, and 54% in mixing ratio 0.5. In point of carbon source supply, It indicated that mixing ration 0.5 was considered as the most appropriate, because degradability of swewage sludge under short time was higher than that of papermill sludge.

  • PDF

Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites

  • Park, Seung Bin;Lee, Moo Sung;Park, Min
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Conductive polymer composites (CPCs) consist of a polymeric matrix and a conductive filler, for example, carbon black, carbon fibers, graphite or carbon nanotubes (CNTs). The critical amount of the electrically conductive filler necessary to build up a continuous conductive network, and accordingly, to make the material conductive; is referred to as the percolation threshold. From technical and economical viewpoints, it is desirable to decrease the conductive-filler percolation-threshold as much as possible. In this study, we investigated the effect of polymer/conductive-filler interactions, as well as the processing and morphological development of low-percolation-threshold (${\Phi}c$) conductive-polymer composites. The aim of the study was to produce conductive composites containing less multi-walled CNTs (MWCNTs) than required for pure polypropylene (PP) through two approaches: one using various mixing methods and the other using immiscible polymer blends. Variants of the conductive PP composite filled with MWCNT was prepared by dry mixing, melt mixing, mechanofusion, and compression molding. The percolation threshold (${\Phi}c$) of the MWCNT-PP composites was most successfully lowered using the mechanofusion process than with any other mixing method (2-5 wt%). The mechanofusion process was found to enhance formation of a percolation network structure, and to ensure a more uniform state of dispersion in the CPCs. The immiscible-polymer blends were prepared by melt mixing (internal mixer) poly(vinylidene fluoride) (PVDF, PP/PVDF, volume ratio 1:1) filled with MWCNT.

The Effect of Viscosity of Natural Rubber on Incorporation Rate of Carbon Black in The Mixing (배합중 카본블랙 혼입속도에 천연고무 점도가 미치는 영향)

  • Kang, Yong-Gu;Han, Shin;Lee, Kye-Jung;Ryu, Dong-Wan;Park, Chan-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.97-103
    • /
    • 1999
  • The power curve during rubber mixing presents useful information for the understanding of rubber mixing process, because the power curve is determined the mixing state of rubber at the point. The time to the second peak on the power curve is known as carbon black incorporation time, BIT. This study gets the quantity relationship of BIT and viscosity of natural rubber, so by determining the mixing time of the compound on the ground of viscosity of the raw rubber. The mixing with natural rubber and carbon black is examined for various grade natural rubbers, encompassing a wide range of Mooney viscosity. Alter smoothing the mixing power curve using a polynomial, the carbon black incorporation time, BIT, was determined time to second power peak on the curve, The BIT's versus specific values on Mooney viscometer test curve show a linear relation, Especially, the peak of initial maximum torque on Mooney viscometer curve, PMT, is most relevant property relating to the BIT. PMT is useful index for determined optimum mixing time, To apply this results at the mixing, we effectively control the natural rubber mixing but can also know the grading of natural rubber upon processability.

  • PDF

Performance and Feasibility Evaluation of Straight-Type Mixing Head in High-Pressure Resin Transfer Molding Process of Carbon Fiber Reinforced Composite Material (탄소 섬유강화 복합소재의 고압 수지이송 성형공정에서 직선형 믹싱헤드의 성능 및 유용성 평가)

  • Han, Beom Jeong;Jeong, Yong Chai;Hwang, Ki Ha;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.157-165
    • /
    • 2017
  • The high-pressure resin transfer molding (HP-RTM) technology has been commercialized for fast production of fiber reinforced composite materials. The high-pressure mixing head was one of the most core component of the HP-RTM process. In this study, a mixing head was systematically designed, manufactured and evaluated. This mixing head was composed of a nozzle, a mixing chamber, a cleaning piston part, and an internal mold release part. In actual, a straight-type structure was newly designed instead of the conventional L-type structure for improving the maximum mixing pressure and mixing ratio precision. The performance of mixing head was showed maximum mixing pressure of 15.22MPa and mixing ratio precision of 0.12%. CFRP molding experiments were successfully obtained a 6~11 laminating carbon sheet using HP-RTM presses and specimen molds.

Carbon nanofiber-reinforced polymeric nanocomposites

  • Jang, Changwoon;Hutchins, John;Yu, Jaesang
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.197-205
    • /
    • 2013
  • Five vapor-grown carbon nanofiber (VGCNF) reinforced vinyl ester (VE) nanocomposite configurations were fabricated, imaged, and mechanically tested in order to obtain information on the influence and the interactions of the role of the microstructure at lower length scales on the observed continuum level properties/response. Three independent variables (the nanofiber weight fraction and two types of nanofiber mixing techniques) were chosen to be varied from low, middle, and high values at equally spaced intervals. Multiple mixing techniques were studied to gain insight into the effect of mixing on the VGCNF dispersion within the VE matrix. The point count method was used for both lower length-scale imaging techniques to provide quantitative approximations of the magnitude and the distribution of such lower length-scale features. Finally, an inverse relationship was shown to exist between the stiffness and strength properties of the resulting nanocomposites under uniaxial quasistatic compression loading.

Properties of Carbon Pastes Prepared with Mixing Ratios of Nano Carbon and Graphite Flakes

  • Kim, Kwangbae;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.615-619
    • /
    • 2018
  • To produce carbon electrodes for use in perovskite solar cells, electrode samples are prepared by mixing various weight ratios of 35 nm nano carbon(NC) and $1{\mu}m$ graphite flakes(GF), GF/(NC+GF) = 0, 0.5, 0.7, and 1, in chlorobenzene(CB) solvent with a $ZrO_2$ binder. The carbon electrodes are fabricated as glass/FTO/carbon electrode devices for microstructure characterization using transmission electron microscopy, optical microscopy, and a field emission scanning electron microscopy. The electrical characterization is performed with a four-point probe and a multi tester. The microstructure characterization shows that an electrode with excellent attachment to the substrate and no surface cracks at weight ratios above 0.5. The electrical characterization results show that the sheet resistance is <$70{\Omega}/sq$ and the interface resistance is <$70{\Omega}$ at weight ratios of 0.5 and 0.7. Therefore, a carbon paste electrode with microstructure and electrical properties similar to those of commercial carbon electrodes is proposed with an appropriate mixing ratio of NC and GF containing a CB solvent and $ZrO_2$.