• Title/Summary/Keyword: Carbon Material

Search Result 3,731, Processing Time 0.032 seconds

Geochemical Studies of Geothermal Waters in Yusung Geotheraml Area (유성 지역 지열수의 지구화학적 특성 연구)

  • 김건영;고용권;김천수;배대석;박맹언
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.32-46
    • /
    • 2000
  • Hydrogeochemical and isotope ($\delta$$^{18}$ O, $\delta$D, $^3$H, $\delta$$^{13}$ C, $\delta$$^{34}$ S, $^{87}$ Sr/$^{86}$ Sr) studies of various kinds of waters (thermal groundwater, deep groundwater, shallow groundwater, and surface water) from the Yusung area were carried out in order to elucidate their geochemical characteristics such as distribution and behaviour of major/minor elements, geochemical evolution, reservoir temperature, and water-rock interaction of the thermal groundwater. Thermal groundwater of the Yusung area is formed by heating at depth during deep circlulation of groundwater and is evolved into Na-HCO$_3$type water by hydrolysis of silicate minerals with calcite precipitation and mixing of shallow groundwater. High NO$_3$contents of many thermal and deep groundwater samples indicate that the thermal or deep groundwaters were mixed with contaminated shallow groundwater and/or surface water. $\delta$$^{18}$ O and $\delta$D are plotted around the global meteoric water line and there are no differences between the various types of water. Tritium contents of shallow groundwater, deep groundwater and thermal groundwater are quite different, but show that the thermal groundwater was mixed with surface water and/or shallow groundwater during uprising to surface after being heated at depths. $\delta$$^{13}$ C values of all water samples are very low (average -16.3$\textperthousand$%o). Such low $\delta$$^{13}$ C values indicate that the source of carbon is organic material and all waters from the Yusung area were affected by $CO_2$ gas originated from near surface environment. $\delta$$^{34}$ S values show mixing properties of thermal groundwater and shallow groundwater. Based on $^{87}$ Sr/$^{86}$ Sr values, Ca is thought to be originated from the dissolution of plagioclase. Reservoir temperature at depth is estimated to be 100~1$25^{\circ}C$ by calculation of equilibrium method of multiphase system. Therefore, the thermal groundwaters from the Yusung area were formed by heating at depths and evolved by water-rock interaction and mixing with shallow groundwater.

  • PDF

Capping Treatment for the Reduction of Phosphorus Release from Contaminated Sediments of Lakes (호소퇴적물로부터 인 용출 저감을 위한 Capping 처리)

  • Kim, Seog-Ku;Lee, Mi-Kyung;Ahn, Jae-Hwan;Yun, Sang-Leen;Kim, So-Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.438-446
    • /
    • 2006
  • A lab-scale batch test was conducted to develop capping materials to reduce the sediment phosphorus in the stagnant water zone of Gyeongancheon in Paldang Lake. The mean grain size(Mz) of sediment in the investigated area was 7.7 ${\phi}$, which is very fine, and the contents of organic carbon($C_{org}$) was 2.4%, which is very high. For the phosphorous release experiment to select the optimal capping material, sand layer, powder-gypsum($CaSO_4{\cdot}2H_2O$), granule-gypsum, complex layer(gypsum+sand) and the control were compared and evaluated in the 150 L reactor for 45 days. In case of the capping with the sand, it was found that the phosphorous from the sediment could be reduced by around 50%. However, it was found that this caused the reduction of the dissolved oxygen in the water column(by less than 3 mg/L) due to the resuspension of sediment and the organic matter decomposition that comes from the generation of $CH_4$ gas in the 1 cm of the sand layer. Therefore, it is likely that the sand layer has to be thickener in case of the sand capping. Powder-gypsum and granule-Gypsum reduced phosphorous release by more than 80%. However, the concentration of ${SO_4}^{2-}$ in the water column increased, making it difficult to apply it to the drinking water protection zone. We developed Fe-Gypsum and $SiO_2$-gypsum materials to reduce the solubility of ${SO_4}^{2-}$. Powder-Gypsum creates the interception film that does not have any aperture on the sediment layer when it is combined with the water. However phosphorous release caused by the generation of $CH_4$ gas may happen at a time when the gypsum layer has the crack. Capping through the complex layer(granule-Gypsum+sand(1 cm)) found to be suitable for the drinking water protection zone because it was effective to prevent phosphorus release. Moreover, this leads to the lower solubility from the concentration of ${SO_4}^{2-}$ into the water column than the powder-Gypsum and granule-Gypsum. The addition of gypsum($CaSO_4{\cdot}2H_2O$) into the sediment can reduce the progress of methanogensis because fast early diagenesis and sufficient supply of ${SO_4}^{2-}$ to the sediment, stimulate the SRB(sulfate reducing bacteria) highly.

Treatment of Malodorous Waste Air Containing Ammonia Using Biofilter System (바이오필터시스템을 이용한 암모니아 함유 악취폐가스 처리)

  • Lee, Eun Ju;Park, Sang Won;Nam, Dao Vinh;Chung, Chan Hong;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.391-396
    • /
    • 2010
  • In this research the characteristics of ammonia removal from malodorous waste-air were investigated under various operating condition of biofiilter packed with equal volume of rubber media and compost for the efficient removal of ammonia, representative source of malodor frequently generated at compost manufacturing factory and publicly owned facilities. Then the optimum conditions were constructed to treat waste-air containing ammonia with biofilter. Biofilter was run for 30 days(experimental frequency of 2 times/day makes 60 experimental times.) with the ammonia loading from $2.18g-N/m^3/h$ to $70g-N/m^3/h$ at $30^{\circ}C$. The ammonia removal efficiency reached almost 100% for I through IV stage of run to degrade up to the ammonia loading of $17g-N/m^3/h$. However the removal efficiency dropped to 80% when ammonia loading increased to $35g-N/m^3/h$, which makes the elimination capacity of ammonia $28g-N/m^3/h$ for V stage of run. However, the removal efficiency remained 80% and the maximum elimination capacity reached $55g-N/m^3/h$ when ammonia loading was doubled $70g-N/m^3/h$ for VI stage of run. Thus the maximum elimination capacity exceeded $1,200g-N/m^3/day$(i.e., $50g-N/m^3/h$) of the experiment of biofilter packed with rock wool inoculated with night soil sludge by Kim et al.. However, the critical loading did not exceed $810g-N/m^3/day$ (i.e., $33.75g-N/m^3/h$) of the biofilter experiment by Kim et al.. The reason to exceed the maximum elimination capacity of Kim et al. may be attributed to that the rubber media used as biofilter packing material provide the better environment for the fixation of nitrifying and denitrification bacteria to its surface coated with coconut based-activated carbon powder and well-developed inner-pores, respectively.

Substrate chain-length specificities of polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa P-5 (Pseudomonas aeruginosa P-5에 존재하는 polyhydroxyalkanoate synthase PhaC1과 PhaC2의 기질특이성)

  • Woo, Sang Hee;Lee, Sun Hee;Rhee, Young Ha
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.455-462
    • /
    • 2016
  • Pseudomonas aeruginosa P-5 is an unusual organism capable of synthesizing polyhydroxyalkanoates (PHAs) consisting of 3-hydroxyvalerate (3HV) and medium-chain-length (MCL) 3-hydroxyalkanoate (3HA) monomer units when C-odd alkanoic acids are fed as the sole carbon source. Evaluation of the substrate chain-length specificity of two P. aeruginosa P-5 PHA synthases ($PhaC1_{P-5}$ and $PhaC2_{P-5}$) by heterologous expression of $PhaC1_{P-5}$ and $PhaC2_{P-5}$ genes in Pseudomonas putida GPp104 revealed that $PhaC2_{P-5}$ incorporates both 3HV and MCL 3HAs into PHA, whereas $PhaC1_{P-5}$ favors only MCL 3HAs for polymerization. In order to obtain $PhaC2_{P-5}$ mutants with altered substrate specificity, site-specific mutagenesis for $PhaC2_{P-5}$ was conducted. Amino acid substitutions of $PhaC2_{P-5}$ at two positions (Ser326Thr and Gln482Lys) were very effective for synthesizing copolymers with a higher 3HV fraction. When recombinant P. putida GPp104 harboring double mutated $phaC2_{P-5}$ gene ($phaC2_{P-5}QKST$) was grown on nonanoic acid, 2.5-fold increase of copolymer content with 3.8-fold increase of 3HV fraction was observed. The $phaC2_{P-5}QKST$-containing Ralstonia eutropha PHB-4 supplemented with valeric acid also produced copolymers consisting of 3HV and 3-hydroxyheptanoate with a high 3HV fraction. These results suggest that recombinants containing $phaC2_{P-5}QKST$ could be useful for production of new PHA copolymers with improved material properties.

The Role of Heme Oxygenase-1 in Lung Cancer Cells (폐암세포주에서 Heme Oxygenase-1의 역할)

  • Jung, Jong-Hoon;Kim, Hak-Ryul;Kim, Eun-Jung;Hwang, Ki-Eun;Kim, So-Young;Park, Jung-Hyun;Kim, Hwi-Jung;Yang, Sei-Hoon;Jeong, Eun-Taek
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.3
    • /
    • pp.304-313
    • /
    • 2006
  • Background : Heme oxygenase-1 (HO-1) is an inducible enzyme that catalyzes the oxidative degradation of heme to form biliverdin, carbon monoxide (CO), and free iron. The current evidence has indicated a critical role of HO-1 in cytoprotection and also in other, more diverse biological functions. It is known that the high expression of HO-1 occurs in various tumors, and that HO-1 has an important role in rapid tumor growth because of its antioxidative and antiapoptotic effects. Therefore, the role of HO-1 was analyzed in human lung cancer cell lines, and especially in the A549 cell line. Material and Methods : Human lung cancer cell lines, i.e., A549, NCI-H23, NCI-H157 and NCI-H460, were used for this study. The expression of HO-1 in the untreated state was defined by Western blotting. ZnPP, which is the specific HO inhibitor we used, and the viability of cells were tested for by conducting MTT assaysy. The HO enzymatic activity, as determined via the bilirubin level, was also indirectly measured. Moreover, the generation of intracellular hydrogen peroxide (H2O2) was monitored fluorimetrically with using a scopoletin-horse radish peroxidase (HRP) assay and 2',7'-dichlorofluorescein diacetate (DCFH-DA). We have also transfected small HO-1 interfering RNA (siRNA) into A549 cells, and the apoptotic effects were evaluated by flow cytometric analysis and Western blotting. Results : The A549 cells had a greater expression of HO-1 than the other cell lines, whereas ZnPP significantly decreased the viability of the A549 cells more than the viability of the other lung cancer cells in a dose-dependant fashion. Consistent with the viability, the HO enzymatic activity also was decreased. Moreover, intracellular H2O2 generation via ZnPP was induced in a dose-dependent manner. Apoptotic events were, then induced in the HO-1 siRNA transfected A549 cells. Conclusion : HO-1 provides new important insights into the possible molecular mechanism of the antitumor therapy in lung cancer.

Development of "Miscanthus" the Promising Bioenergy Crop (유망 바이오에너지작물 "억새" 개발)

  • Moon, Youn-Ho;Koo, Bon-Cheol;Choi, Yoyng-Hwan;Ahn, Seung-Hyun;Bark, Surn-Teh;Cha, Young-Lok;An, Gi-Hong;Kim, Jung-Kon;Suh, Sae-Jung
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.330-339
    • /
    • 2010
  • In order to suggest correct direction of researches on Miscanthus spp. which are promising bioenergy crop, authors had reviewed and summarized various literature about botanical taxonomy, morphology and present condition of breeding, cultivation and utilization of miscanthus. Among the genus of Miscanthus which are known 17 species, the most important species are M. sinensis and M. sacchariflorus which origin are East Asia including Korea, and M. x giganteus which is inter-specific hybrid of tetraploid M. sacchariflorus and diploid M. sinensis. Miscanthus is superior to other energy crops in resistance to poor environments including cold, saline and damp soil, nitrogen utilization efficiency, budget of input energy and carbon which are required for producing biomass and output which are stored in biomass. The major species for production of energy and industrial products including construction material in Europe, USA and Canada is M. x giganteus which was introduced from Japan in 1930s. In present, many breeding programs are conducted to supplement demerits of present varieties and to develop "Miscanes" which is hybrid of miscanthus and sugar cane. In Korea, the researches on breeding and cultivation of miscanthus were initiated in 2007 by collecting germplasms, and developed "Goedae-Uksae 1" which is high biomass yield and "mass propagation method of miscanthus" which can improve propagation efficiency in 2009. In order to develop "Korean miscanthus industry" in future, the superior varieties available not only domestic but also foreign market should be developed by new breeding method including molecular markers. Researches on production process of cellulosic bio-ethanol including pre-treatment and saccharification of miscanthus biomass also should be strengthen.

The Changes of Cerebral Metabolic and Hemodynamic Parameters, Brain Histology, and Serum Levels of Neuron-Specific Enolase During Retrograde Cerebral Perfusion Under Pofound Hypothermic total Circulatory Arrest in Pigs (돼지에서 초저체온 순환정지 하의 역행성 뇌관류시 뇌대사, 혈류역학 지표, 뇌조직 소견 및 혈청 내 neuron-specific enolase의 변화)

  • Kim, Kyung-Hwan;Ahn, Hyuk
    • Journal of Chest Surgery
    • /
    • v.33 no.6
    • /
    • pp.445-468
    • /
    • 2000
  • Background: Retrograde cerebral perfusion(RCP) is currently used for brain protection during aorta surgery, however, for the safety of it, various data published so far are insufficient. We performed RCP using pig and investiaged various parameters of cerebral metabolism and brain injury after RCP under deep hypothermia. Material and Method: We used two experimental groups: in group I(7 pigs, 20 kg), we performed RCP for 120 minutes and in group II (5 pigs, 20 kg), we did it for 90 minutes. Nasopharyngeal temperature, jugular venous oxygen saturation, electroencephalogram were continuously monitored, and we checked the parameters of cerebral metabolism, histological changes and serum levels of neuron-specific enolose(NSE) and lactic dehydrogenase(LDH). Central venous pressure during RCP was mainained in the range of 25 to 30 mmHg. Result: Perfusion flow rates(ml/min) during RCP were 130$\pm$57.7(30 minutes), 108.6$\pm$55.2(60 minutes), 107.1$\pm$58.8(90 minutes), 98.6$\pm$58.7(120 minutes) in group I and 72$\pm$11.0(30 minutes), 72$\pm$11.0(60 minutes), 74$\pm$11.4(90 minutes) in group II. The ratios of drain flow to perfusion flow were 0.18(30 minutes), 0.19(60 minutes), 0.17(90 minutes), 0.16(120 minutes) in group I and 0.21, 0.20, 0.17 in group II. Oxygen consumptions(ml/min) during RCP were 1.80$\pm$1.37(30 minutes), 1.72$\pm$1.23(60 minutes), 1.38$\pm$0.82(90 minutes), 1.18$\pm$0.67(120 minutes) in group I and 1.56$\pm$0.28(30 minutes), 1.25$\pm$0.28(60 minutes), 1.13$\pm$0.26(90 minutes). We could observe an decreasing tendency of oxygen consumption after 90 minutes of RCP in group I. Cerebrovascular resistance(dynes.sec.cm-5) during RCP in group I incrased from 71370.9$\pm$369145.5 to 83920.9$\pm$49949.0 after the time frame of 90 minutes(p<0.05). Lactate(mg/min) appeared after 30 minutes of RCP and the levels were 0.15$\pm$0.07(30 minutes), 0.18$\pm$0.10(60 minutes), 0.19$\pm$0.19(90 minutes), 0.18$\pm$0.10(120 minutes) in group I and 0.13$\pm$0.09(30 minutes), 0.19$\pm$0.03(60 minutes), 0.29$\pm$0.11(90 minutes) in group II. Glucose utilization, exudation of carbon dioxide, differences of cerebral tissue acidosis between perfusion blood and drain blood were maintained constantly during RCP. Oxygen saturation levels(%) in drain blood during RCP were 22.9$\pm$4.4(30 minutes), 19.2$\pm$4.5(60 minutes), 17.7$\pm$2.8(90 minutes), 14.9$\pm$2.8(120 minutes) in group I and 21.3$\pm$8.6(30 minutes), 20.8$\pm$17.6(60 minutes), 21.1$\pm$12.1(90 minutes) in group II. There were no significant changes in cerebral metabolic parameters between two groups. Differences in serum levels of NSE and LDH between perfusion blood and drain blood during RCP showed no statistical significance. Serum levels of NSE and LDH after resuming of cardipulmonary bypass decreased to the level before RCP. Brain water contents were 0.73$\pm$0.03 in group I and 0.69$\pm$0.06 in group II and were higher than those of the controls(p<0.05). The light microscopic findings of cerebral neocortex, basal ganglia, hippocampus(CA1 region) and cerebellum showed no evidence of cerebral injury in two groups and there were no different electron microscopy in both groups(neocortex, basal ganglia and hippocampus), but they were thought to be reversible findings. Conclusion: Although we did not proceed this study after survival of pigs, we could perform the RCP successfully for 120 minutes with minimal cerebral metabolism and no evidence of irreversible brain damage. The results of NSE and LDH during and after RCP should be reevaluated with survival data.

  • PDF

Detorque force and surface change of coated abutment screw after repeated closing and opening (코팅된 지대주 나사의 반복 착탈 후 풀림력과 표면변화에 대한 연구)

  • Jang, Jong-Suk;Kim, Hee-Jung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.500-510
    • /
    • 2008
  • Statement of problem: Recently researches about WC/C (Tungsten Carbide/Carbon) or TiN (Titanium Nitride) coating on abutment screws are going on. It decreases friction coefficient, resistance against corrosion and withdrawal of physical fragility when the coating is applied to the metal surfaces. It is reported that coated abutment screws improved abrasion, adaptability and detorque force. Purpose: This study is about the effects of coated abutment screws on loosening of screw and for the purpose of solving the loosening phenomenon of abutment screws which is clinical problem. Material and methods: Detorque force and surface changes are compared when 10 times of repeated closing and opening are applied to both uncoated titanium abutment screws (Group A) and coated abutment screws with WC/C (Group B) and TiN (Group C). Each group was made up of 10 abutment screws. Results: 1. Before repeated closing and opening, Somewhat rough surface with regular direction was observed in Group A. Coated granules were observed in group B and group C and overall coated layer appeared in regular and smooth form. 2. Before repeated closing and opening, The coated surface showed bigger and thicker size of coated granules in Group C than Group B. 3. After repeated closing and opening, abrasion and deformation of abutment screw surface was observed in Group A and Group B. Exfoliation phenomenon was observed in Group B. 4. Group A showed biggest range of decrease when the weight changes of abutment screws were measured before and after repeated closing and opening. Group C showed less weight changes than Group B but there was no statistical difference between two groups. 5. Group B and Group C showed higher average detorque force than Group A and there was statistical difference. 6. Group A showed more prominent decrease tendency of average detorque force than Group B and Group C. Conclusion: Coated abutment screws with WC/C or TiN did not show prominent surface changes than uncoated titanium abutment screws even though they were repeatedly used. And they showed excellent resistance against friction and high detorque force. Thus it is considered that adaptation of WC/C or TiN coating on abutment screws will improve the screw loosening problem.

Properties of Quercus variabilis bio-oil prepared by sample preparation (시료 조건에 따른 굴참나무 바이오오일의 특성)

  • Chea, Kwang-Seok;Jo, Tae-Su;Choi, Seok-Hwan;Lee, Soo-Min;Hwang, Hye-Won;Choi, Joon-Weon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.148-156
    • /
    • 2015
  • In this study the differences in the sample size and sample input changes as characteristics of bio-oil oak(Quercus variabilis), the oak 0.5~2.0 mm of the oak weighing 300~900g was processed into bio-oil via fast pyrolysis for 1.64 seconds. In this study, the physico-chemical properties of biooil using oak were investigated. Fast pyrolysis was adopted to increase the bio-oil yield from raw material. Although the differences in sample size and sample input changes in the yield of pyrolysis products were not significantly noticeable, increases in the yield of bio-oil accounted for approximately 60.3 to 62.1%, in the order of non-condensed gas, and biochar. When the primary bio-oil obtained by the condensation of the cooling tube and the seconary bio-oil obtained from the electric dust collector were measured separately, the yield of primary bio-oil was twice as higher than that of the secondary bio-oil. However, HHV (Higher Heating Value) of the secondary bio-oil was approximately twice as higher than that of the primary bio-oil by up to 5,602 kcal/kg. The water content of the primary bio-oil was more than 20% of the moisture content of the secondary bio-oil, which was 10% or less. In addition, the result of the elemental analysis regarding the secondary bio-oil, its primary carbon content was higher than that of the primary bio-oil, and since the oxygen content is low, the water content as well as elemental composition are believed to have an effect on the calorific value. The higher the storage temperature or the longer the storage period, the degree of the viscosity of the secondary bio-oil was higher than that of the primary bio-oil. This can be the attributed to the chemical bond between the polymeric bio-oil that forms during the storage period.

Physical and Chemical Characteristics of Cotton Waste Substrate According to Fermentation Conditions for Oyster Mushroom Bed Cultivation (느타리버섯 폐면배지의 발효조건별 이화학적 특성)

  • Ha, Tai-Moon;Yoon, Seon-Mee;Ju, Young-Cheuol;Sung, Jae-Mo
    • The Korean Journal of Mycology
    • /
    • v.36 no.2
    • /
    • pp.163-171
    • /
    • 2008
  • We have surveyed the variation of physical and chemical characteristics of aerobic and anaerobic outdoor fermentation of cotton wastes using for oyster mushroom cultivation. The inner temperature of cotton wastes fermented aerobically covered with thin cloth and setting pallet at bottom was higher than that of anaerobic fermented cotton wastes covered with P.E vinyl and the maximum temperature was $75^{\circ}C$ at 5th day after fermentation. pH of cotton wastes fermented aerobically was increased up to 8.9 after fermentation of $9{\sim}12$ days, but that of anaerobically fermented was decreased up to 5.0. Total carbon content was decreased but total nitrogen content was increased when fermentation was in progress. Oxygen concentration of cotton wastes fermented aerobically was decreased until 6 days after fermentation but increased after 9 days of fermentation. Ammonia concentration of cotton wastes fermented aerobically and anaerobically was below 10 ppm and $20{\sim}85\;ppm$ respectively. In anaerobic condition the cotton wastes was contaminated with mold ($15{\sim}50%$), where no contamination was found in aerobic condition during spawn running stage. Yields of mushroom grown on cotton wastes aerobically fermented for $6{\sim}9$ days was $23.0{\sim}23.6\;kg$ per $3.3\;m^2$ area.