• Title/Summary/Keyword: Carbon Label

Search Result 21, Processing Time 0.023 seconds

Recognition and Using Status of Carbon Disulfide (CS2) as Fumigant for Controlling Chestnut Weevil, Curculio sikkimensis among Chestnut Farmers (일부 밤 농사 및 가공 종사자의 밤바구미 훈증제 이황화탄소 사용실태 및 인식)

  • Lee, Moo-Sik;Kim, Eun-Young;Lee, Jae-Lim;Sohn, Gi-Yeon
    • Journal of agricultural medicine and community health
    • /
    • v.41 no.2
    • /
    • pp.63-74
    • /
    • 2016
  • Objectives: We surveyed the awareness and current status of using fumigant carbon disulfide for exterminate Curculio sikkimensis among chestnut farmers in Chungnam Province to suggest directions for health education and public relations. Methods: We designed questionnaires to evaluate recognition of fumigant carbon disulfide. We conducted a questionnaire survey to assess recognition and recognition level of fumigant carbon disulfide by the study variables. Results: The recognition status for fumigant carbon disulfide was 74.5%, but the recognition level was low (know well 27.5%). The path of recognition was 45.1% and 15.7% for neighbor and rural technology center, respectively. The recognition status for warning label of fumigant carbon disulfide was 52.9%. Recognition for warning label of fumigant carbon disulfide was tended to increase with high educational attainment, bigger owning land area. Recognition on the content of warning label were 29.4%, 27.5%, 21.6%, and 21.6% for inflammability, toxicity, hazard, and explosiveness, respectively. Using personal protection equipment was tended to increase with the high status of awareness on fumigant carbon disulfide. Conclusions: Health education programs for using fumigant carbon disulfide are needed for chestnut farmers. In addition, publicity information activities about prevention and protection of carbon disulfide poisoning are needed for high risk farmers.

A Study on Analyzing Eco-efficiency of Carbon Labeled Building Materials - Focused on Floor Finishes - (탄소성적표시 건축 재료의 환경 효율성 분석 연구 - 바닥 마감재를 중심으로 -)

  • Choi, Ji-Hye;Lee, Yoon-Sun;Kim, Jae-Jun
    • Journal of the Korean housing association
    • /
    • v.25 no.2
    • /
    • pp.71-78
    • /
    • 2014
  • In recent years, Korean government has focused on improving the environmental impact of products in order to reduce greenhouse gas emissions and to achieve their energy goals. The government has been conducting the following polices such as green procurement inducement and certification system. After carbon labeling was conducted in 2009, among a total of 1,065 items, 97 building materials have been given a certification: finishing materials items have the highest weight (56%). The increase in the certification numbers shows that there has been considerable technical efforts in the building material industry. At the awareness of carbon label and purchase of low carbon product, however, customers are aware of carbon labeling but the purchasing rate of carbon product is low. In this paper, we suggest that low carbon activities must also be considered in order to create client value by adding the concept of ecological efficiency. The objective of this study to measurer the eco-efficiency of carbon labeled building materials on the basis of environmental aspects of the product with the perspective of economy for purchasing the excellent products.

A Comparative Study for Product Carbon Footprint of Detergent, Heat Insulating Material, Vacuum Cleaner (Korea, UK and Japan) (한국, 영국, 일본 제품 탄소발자국 기준에 따른 세제, 단열재, 진공청소기 산정 결과 비교 평가)

  • Ju, Hong-Shin;Yeon, Seong-Mo;Shin, Yoo-Jin;Kim, Burmshik;Lim, Noh-Hyun;Jeong, Heon-Chang;Hong, Eung-Pyo
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.440-445
    • /
    • 2012
  • 15 carbon footprint product (CFP) schemes, including Korea Carbon Footprint Label, UK Carbon Trust's Carbon Reduction Label and Japan CFP are implemented in the world. A CFP describes green house gases (GHGs) emissions emitted throughout product's life cycle and is intended to reduce GHGs emissions by labeling a CFP result on product. This study calculates Korea, UK and Japan CFP result of vacuum cleaner, detergent, packagin material in order to analyze the Korea, UK and Japan CFP standards. Our results demonstrate significant differences among then calculated results because of criteria, emission factors, etc. Therefore, there are many difficulties in providing various CFP results and the international standard and guidelines for product category are needed.

Carbon Nanotubes Multi Electrodes Array to Image Capacitance for Label-free Discrimination of Lipid Region in Atherosclerosis ex vivo

  • Song, Jun-Ho;Lee, Seon-Mi;Han, Nal-Ae;Yu, Gyeong-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.372.1-372.1
    • /
    • 2016
  • Recently, there are a lot of diseases all around the world. Out of them, Atherosclerosis (AS) is the most common cause of stroke, cardiovascular mortality, and myocardial infarction. The macrophage-derived foam cell, which is formed by oxidized low-density lipoprotein (oxLDL), is the crucial marker for AS. In this study, we report a label-free capacitance imaging technique with multi-electrode array (MEA). The lipid-rich aorta arch lesions, which are derived from an apolipoprotein-E receptor-deficient (apoE-/-) mouse, exhibit higher capacitance than the lipid-free aorta arch, allowing the capacitance imaging of lipid region in atherosclerosis. To improve the contacts between MEA and tissue, polypyrrole(PPy)-coated multi walled carbon nanotubes (MWNTs) multi electrode array (PPy-MWNTs-MEA) was fabricated. Compared to TiN-MEA, PPy-MWNTs-MEA yielded lower contact impedance and better capacitance images. In addition, we have also developed a flexible MEA using single walled carbon nanotubes on a PET substrate. The lipid region could be discriminated in the capacitance images of the lipid-rich aorta arch lesions measured using flexible MEA, demonstrating a feasibility of in vivo applications.

  • PDF

Recent advances in carbon-11 chemistry

  • Lu, Yingqing;Lee, Byung Chul;Kim, Sang Eun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.1
    • /
    • pp.9-16
    • /
    • 2016
  • Carbon-11 is one of the most sensitive and desirable positron emission tomography radio-isotope, which offers the capacity to be incorporated, through a covalent bond, into biologically active molecules without altering their biological properties. Carbon-11 can be obtained from the cyclotron with two different chemical forms: $[^{11}C]CO_2$ and $[^{11}C]CH_4$. [$^{11}C$]Methyl iodide has been widely used as a highly reactive labelling precursor that can be applied to label carbon-11 with biologically active molecules via alkylation of N-, O-, or S-nucleophiles. A more recent and still challenging labeling method is transition metal mediated $^{11}C$-carbonylation. Advances in organic chemistry, radiochemistry and improved automated techniques greatly encourage researchers to develop more carbon-11 labelled radiotracers for molecular imaging studies. This mini-review will introduce a historical track of carbon-11 chemistry combining with examples and its role in near future.

Label-free Femtomolar Detection of Cancer Biomarker by Reduced Graphene Oxide Field-effect Transistor

  • Kim, Duck-Jin;Sohn, Il-Yung;Jung, Jin-Heak;Yoon, Ok-Ja;Lee, N.E.;Park, Joon-Shik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.549-549
    • /
    • 2012
  • Early detection of cancer biomarkers in the blood is of vital importance for reducing the mortality and morbidity in a number of cancers. From this point of view, immunosensors based on nanowire (NW) and carbon nanotube (CNT) field-effect transistors (FETs) that allow the ultra-sensitive, highly specific, and label-free electrical detection of biomarkers received much attention. Nevertheless 1D nano-FET biosensors showed high performance, several challenges remain to be resolved for the uncomplicated, reproducible, low-cost and high-throughput nanofabrication. Recently, two-dimensional (2D) graphene and reduced GO (RGO) nanosheets or films find widespread applications such as clean energy storage and conversion devices, optical detector, field-effect transistors, electromechanical resonators, and chemical & biological sensors. In particular, the graphene- and RGO-FETs devices are very promising for sensing applications because of advantages including large detection area, low noise level in solution, ease of fabrication, and the high sensitivity to ions and biomolecules comparable to 1D nano-FETs. Even though a limited number of biosensor applications including chemical vapor deposition (CVD) grown graphene film for DNA detection, single-layer graphene for protein detection and single-layer graphene or solution-processed RGO film for cell monitoring have been reported, development of facile fabrication methods and full understanding of sensing mechanism are still lacking. Furthermore, there have been no reports on demonstration of ultrasensitive electrical detection of a cancer biomarker using the graphene- or RGO-FET. Here we describe scalable and facile fabrication of reduced graphene oxide FET (RGO-FET) with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}$ 1-antichymotrypsin (PSA-ACT) complex, in which the ultrathin RGO channel was formed by a uniform self-assembly of two-dimensional RGO nanosheets, and also we will discuss about the immunosensing mechanism.

  • PDF

Amperometric Immunosensor for Myeloperoxidase in Human Serum Based on a Multi-wall Carbon Nanotubes-Ionic Liquid-Cerium Dioxide Film-modified Electrode

  • Lu, Lingsong;Liu, Bei;Liu, Chenggui;Xie, Guoming
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3259-3264
    • /
    • 2010
  • A label-free amperometric immunosensor has been proposed for the detection of myeloperoxidase (MPO) in human serum. To fabricate such an immunosensor, a composite film consisting of N,N-dimethylformamide (DMF), multiwall carbon nanotubes (MWCNTs) and 1-ethyl-3-methyl imidazolium tetrafluoroborate ($EMIMBF_4$) suspension was initially formed on a glassy carbon electrode (GCE). Then cerium dioxide ($CeO_2$) dispersed by chitosan was coated on the GCE. After that, MPO antibodies (anti-MPO) were attached onto the nano$CeO_2$ surface. With a noncompetitive immunoassay format, the antibody-antigen complex formed between the immobilized anti-MPO and MPO in sample solution. The immunosensor was characterized by cyclic voltammetry, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The factors influencing the performance of the immunosensor were studied in detail. Under optimal conditions, the current change before and after the immunoreaction was proportional to MPO concentration in the range of 5 to $300\;ng\;mL^{-1}$ with a detection limit of $0.2\;ng\;mL^{-1}$.

Organophosphorus Compounds Detection Using Suspended SWNT Films (부양형 탄소나노튜브 필름을 이용한 유기인 화합물 검출)

  • Kim, Intae;An, Taechang;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.346-351
    • /
    • 2013
  • We developed a one-step method for fabrication of addressable suspended SWNT films and demonstrate excellent detection performance of paraoxon based on OPH-immobilized SWNT films for environmental monitoring. For dispersed SWNT suspension, COOH-SWNT was prepared by the oxidation of carbon nanotubes using acid treatment and sonication. Suspended SWNT-film was fabricated between cantilever electrodes by dielectrophoretic force and surface tension of the water meniscus. After that, OPH were immobilized on suspended SWNT-films by nonspecific binding for enzymatic hydrolysis of paraoxon. The electrical properties of the SWNT films were measured in real time at room temperature. Structurally suspended SWNT films from substrate surface made possible rapid and highly sensitive detection of target molecules with increased convectional and diffusional fluxes of the molecules and with a large binding surface area. SWNT film FET resulted in a real-time, label-free, and electrical detection of paraoxon to the concentration of ca. $10{\mu}m$ with a step-wise rapid response time of several seconds.

Quantitation of Phthalate and Adipate in Natural Mineral Water and PET Container (먹는 샘물 및 PET 용기 중 Phthalate와 Adipate의 정량분석)

  • Shin, Ueon-Sang;Ahn, Hye-Sil;Shin, Ho-Sang
    • Analytical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.475-481
    • /
    • 2002
  • The determination of phthalates and adipate in natural mineral water and its container is described. Phthalates and adipate were extracted from natural mineral water by liquid-liquid extraction with methylene chloride, concentrated and then injected in GC-MS (SIM). Phthalates and adipate from 1) PET, cap, label and glue were extracted in Soxhlet with 50 mL of carbon tetrachloride, purified with silicagel and detected with GC-MS (SIM). Peak shapes and quantitation of phthalates and adipate were excellent, with linear calibration curves over a range of $0.1{\sim}10{\mu}g/L$ in water sample ($r^2$ > 0.996) and over a range of $1{\sim}1,000{\mu}g/Kg$ in solid samples ($r^2$>0.994). The detection limits of analytes were $0.002{\sim}0.010{\mu}g/L$ in water and $0.01{\sim}0.02{\mu}g/Kg$ in solid samples. Five kinds of natural mineral water samples, two PETs, two labels, two caps and two glues were quantified by the described procedure. As a results, the concentrations of total phthalates in natural mineral water ranged from ND ~ 1.2 ng/mL. Otherwise, the concentrations of total phthalate extracted from PET ranged from 0.55 ~ 1.2 mg/Kg. We found that the accurate determination of phthalte and adipate in natural mineral water and container must be considered blank correction and the removal of label and glue in PET sample.