• Title/Summary/Keyword: Carbon Filled Rubber

Search Result 85, Processing Time 0.026 seconds

Effects of Accelerators on the Vulcanization Properties of Silica vs. Carbon Black Filled Natural Rubber Compounds (촉진제가 실리카와 카본블랙으로 충전된 천연고무 복합소재의 가황 특성에 미치는 영향)

  • Kim, Sung-Min;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.269-275
    • /
    • 2013
  • Thiuram (DPTT, TMTD), thiazole (MBT, MBTS), sulfenamide (CBS, NOBS), and zinc containing thiuram (dithiocarbamate) (ZDBC) type accelerators were added into silica and carbon black filled natural rubber (NR) compounds. Their effects on vulcanization time and rate were compared. The vulcanization rate of thiuram type accelerator added compounds showed the fastest rate, followed by thiazole and sulfenamide types. Silica filled natural rubber (NR) compounds showed a slower vulcanization time ($t_{s2}$, $t_{10}$, $t_{90}$) and lower cure rate index (CRI) than carbon black filled ones upon each accelerator.

Influence of Mixing Procedure on Properties of Rubber Compounds Filled with Both Silica and Carbon Black (배합 공정이 실리카와 카본블랙으로 보강된 고무 배합물의 특성에 미치는 영향)

  • Joo, Chang-Whan;Kim, Dong-Chul;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.14-20
    • /
    • 2002
  • Silica-filled rubber compound needs longer mixing time compared to carbon black-filled one since it has poor dispersion or the filler. Influence of the mixing procedure on the properties of natural rubber compound filled with both silica and carbon black was studied. The discharge temperature of the master batch (MB) mixing was $150^{\circ}C$. The mixing time was longer when silica and carbon black were loaded separately than when loaded simultaneously. The mixing time was longer when silica was loaded first than when carbon black is loaded first. The compounds prepared by one MB step (conventional mixing) were compared with the compounds prepared by two MB steps (two-step mixing). Scorch times of the two-step mixing compounds were longer than those by the conventional mixing ones. Bound rubber contents of the formers were lower than those of the tatters. The two-step mixing vulcanizates had longer elongation at break, higher tensile strength, and better fatigue life.

Influence of Mixing Procedure on Properties of Carbon Black-filled Natural Rubber Compounds

  • Park, Sung-Seen
    • Macromolecular Research
    • /
    • v.8 no.4
    • /
    • pp.192-198
    • /
    • 2000
  • Cure characteristics and physical properties of carbon black-filled natural rubber (NR) compounds depending on the mixing procedure were studied using the compounds with different pre-final mixing (FM-1) stages. Carbon master batch (MB) and first and second remitting (1RM and 2RM) stages were employed as the FM-1 stage. Bound rubber content of the FM compound decreased with increasing the mixing steps. This was due to the decrease of the molecular weight distribution of the polymer by the rubber chain scission during the mixing. The Mooney viscosity decreased with increasing the mixing steps. Cure characteristics of the compounds were found to be different with the mixing procedures. The cure times of the compound became slower by increasing the number of the mixing steps. This was explained by the length of rubber chain, the carbon black network, distribution of the curatives in the compound, and immobilization of the polymeric segments. Modulus and tensile strength of the vulcanizate did not show a specific trend with the mixing procedure. Fatigue life of the vulcanizate increased by increasing the mixing stages.

  • PDF

Elastic Response of Filled and Unfilled Green Rubbers (충전 및 미충전 미가교 고무의 탄성반응)

  • Lee, K.Y.;Shin, S.;Chung, K.H.;Yoon, T.H.;Kaang, S.
    • Elastomers and Composites
    • /
    • v.38 no.3
    • /
    • pp.273-280
    • /
    • 2003
  • Elastic responses on both pure natural rubber melts with different molecular weights and the rubber compounds mixed with various types of carbon blacks were investigated in this study. Furthermore, the degree of bound rubber was measured for various carbon blacks with different sizes and structures in order to study the interaction between the rubber and carbon blacks, and to study the correlation between the interaction and the elastic responses. As a loading amount of carbon black increased, the degree of bound rubber became higher, particularly far carbon-black particles with smaller sizes and higher structures. The elastic responses of the rubber melt filled with carbon black remarkably improved, as compared with those of unfilled rubber melt, specially in carbon black showing higher contents of bound rubber. Stress relaxation was more delayed and recovery behavior became more elastic, as the molecular weight of the rubber melt increased and the size of carbon-black particles was decreased. Permanent set became higher, as the molecular weight of the rubber melts decreased and the size of carbon-black particles increased.

A Study on Vulcanization Characteristics and Physical Properties for the Filler Compounded NR Vulcanizates.(II) (각종(各種) 충전제(充塡劑)를 배합(配合)한 천연(天然)고무의 가황체(加黃體)의 특성(特性)에 관(關)한 연구(硏究)(II)(가황특성(加黃特性) 및 물리적성질(物理的性質)))

  • Choi, Jae-Woon;Hong, Cheong-Seok;Herh, Dong-Sub
    • Elastomers and Composites
    • /
    • v.20 no.1
    • /
    • pp.13-24
    • /
    • 1985
  • It is generally agreed that strong linkages exist between rubber chains and reinforcing filler particles. The purpose of this study is to examine the effect of rubber-filler attachments on the various mechanical properties of the rubber. In particular, the modulus and strength will be altered by these attachments. For this study, the curing properties are examined by means of ODR (Oscillating Disk Rheometer), the physical properties by means of Instrong. The results of this study can be summarized as follows. In the ODR test, the carbon black filled stock has shorter scorch time than gum stock and, the silica and clay filled stock has longer scorch time than gum stock. In the modulus, ten sile and swelling properties, the vulcanizates filled with carbon black had higher those values than inorganic filler loaded NR vulcanizates, but the rebound rate showed that the silica filled NR vulcanizates was lower than other inorganic filler contained NR vulcanizates and the ISAF filled NR vulcanizates was lower than other carbon block contained NR vulcanizates.

  • PDF

Influence of Filler Composition Ratio on Properties of Both Silica and Carbon Black-Filled Styrene-Butadiene Rubber Compounds (실리카와 카본블랙으로 보강된 SBR 고무 배합물의 특성에 보강제 조성비가 미치는 영향)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.36 no.1
    • /
    • pp.37-43
    • /
    • 2001
  • Influence of the filler composition ratio on cure characteristics and bound rubber content of the compounds and on physical properties of the vulcanizates were studied using both silica and carbon black-filled styrene-butadiene rubber (SBR) compounds with the total filler content of 80.0 phr. The bound rubber content increased slightly with increase of the silica content ratio. The viscosity also increased with increasing the silica content ratio, especially increased steeply after the silica content of 60.0 phr. The cure times obtained with a rheometer, t2, t40, and t90, are increased by increasing the silica content ratio and the cure rate decreased. The delta torque increased with the increased silica content ratio. Variation or the modulus with the silica content ratio showed a decreased trend though the delta torque increased. The tan ${\delta}$ at $60^{\circ}C$ decreased with increased of the silica content ratio.

  • PDF

A Comparison Study on Reinforcement Behaviors of Functional Fillers in Nitrile Rubber Composites

  • Seong, Yoonjae;Lee, Harim;Kim, Seonhong;Yun, Chang Hyun;Park, Changsin;Nah, Changwoon;Lee, Gi-Bbeum
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.306-313
    • /
    • 2020
  • To investigate the reinforcing effects of functional fillers in nitrile rubber (NBR) materials, high-structure carbon black (HS45), coated calcium carbonate (C-CaCO3), silica (200MP), and multi-walled carbon nanotubes (MWCNTs) were used as functional filler, and carbon black (SRF) as a common filler were used for oil-resistant rubber. The curing and mechanical properties of HS45-, 200MP-, and MWCNT-filled NBR compounds were improved compared to those of the SRF-filled NBR compound. The reinforcing effect also increased with a decrease in the particle size of the fillers. The C-CaCO3-filled NBR compound exhibited no reinforcing effect with increasing filler concentration because of their large primary particle size (2 ㎛). The reinforcing behavior based on 100% modulus of the functional filler based NBR compounds was compared by using several predictive equation models. The reinforcing behavior of the C-CaCO3-filled NBR compound was in accordance with the Smallwood-Einstein equation whereas the 200MP- and MWCNT-filled NBR compounds fitted well with the modified Guth-Gold (m-Guth-Gold) equation. The SRF- and HS45-filled NBR compounds exhibited reinforcing behavior in accordance with the Guth-Gold and m-Guth-Gold equations, respectively, at a low filler content. However, the values of reinforcement parameter (100Mf/100Mu) of the SRF- and HS45-filled NBR compounds were higher than those determined by the predictive equation model at a high filler content. Because the chains of SRF composed of spherical filler particles are similarly changed to rod-like filler particles embedded in a rubber matrix and the reinforcement parameter rapidly increased with a high content of HS45, the higher-structured filler. The reinforcing effectiveness of the functional fillers was numerically evaluated on the basis of the effectiveness index (��SRF/��f) determined by the ratio of the volume fraction of the functional filler (��f) to that of the SRF filler (��SRF) at three unit of reinforcing parameter (100Mf/100Mu). On the basis of their effectiveness index, MWCNT-, 200MP-, and HS45-filled compounds showed higher reinforcing effectiveness of 420%, 70%, and 20% than that of SRF-filled compound, respectively whereas C-CaCO3-filled compound exhibited lower reinforcing effectiveness of -50% than that of SRF-filled compound.

Effect of Surfactant on the Physical Properties and Crosslink Density of Silica Filled ESBR Compounds and Carbon Black Filled Compounds

  • Hwang, Kiwon;Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Kim, Donghyuk;Ryu, Gyeongchan;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.39-47
    • /
    • 2018
  • Styrene-butadiene rubber (SBR) is widely used in tire treads due to its excellent abrasion resistance, braking performance, and reasonable cost. Depending on the polymerization method, SBR is classified into solution-polymerized SBR (SSBR) and emulsion-polymerized SBR (ESBR). ESBR is less expensive and environmentally friendlier than SSBR because it uses water as a solvent. A higher molecular weight is also easier to obtain in ESBR, which has advantages in mechanical properties and tire performance. In ESBR polymerization, a surfactant is added to create an emulsion system with a hydrophobic monomer in the water phase. However, some amount of surfactant remains in the ESBR during coagulation, making the polymer chains in micelles clump together. As a result, it is well-known that residual surfactant adversely affects the physical properties of silica-filled ESBR compounds. However, researches about the effect of residual surfactant on the physical properties of ESBR are lacking. Therefore, in this study we compared the effects of remaining surfactant in ESBR on the mechanical properties of silica-filled and carbon black-filled compounds. The crosslinking density and filler-rubber interaction are also analyzed by using the Flory-Rehner theory and Kraus equation. In addition, the effects of surfactant on the mechanical properties and crosslinking density are compared with the effects of TDAE oil (a conventional processing aid).

Influence of Kinds of Fatty Acids and Poly(ethylene glycol)s on Properties of Silica-Filled Natural Rubber Compounds

  • Park, Sung-Seen;Park, Sumgsoo
    • Macromolecular Research
    • /
    • v.9 no.2
    • /
    • pp.92-99
    • /
    • 2001
  • Silica-filled rubber compounds have slower cure characteristics than carbon black-filled ones due to the adsorption of curatives on the silica surface. Fatty acid was used as a cure activator along with zinc oxide in a sulfur cure system. Poly(ethylene glycol), PEG, was used in silica-filled rubber compounds to prevent adsorption of the curatives on the silica surface. In this study, influence of the size of fatty acid and PEG on properties of silica-filled NR compounds was investigated. It was found that the size of fatty acid and PEG affected the curt: characteristics and physical properties. The cure rate becomes faster as the PEG size increases. By increasing the size of fatty acid or PEG, the delta torque of the compound decreases while the Mooney viscosity increases. The modulus of the vulcanizate decreases with increasing the molecular weight of fatty acid or PEG. The experimental results were explained by the filler dispersion and by the prevention of the curative-adsorption on the silica surface.

  • PDF

Measurement of Thermal Shrinkage/Expansion Force of Filled Rubber (충전된 고무재료의 열변화에 따른 수축력/팽창력 측정)

  • Park, Sang-Min;Hong, Chang-Kook;Cho, Dong-Lyun;Kaang, Shin-Young
    • Elastomers and Composites
    • /
    • v.42 no.4
    • /
    • pp.201-208
    • /
    • 2007
  • In this study, the thermal shrinkage and expansion stresses of filled NR and SBR vulcanizates were measured to investigate the dimensional stability at an elevated temperature. When a rubber sample was held at constant pre-strain, a thermal stress developed upon heating due to the entropic consideration. The peak shrinkage stress of carbon black or silica filled NR decreased with increasing filler content. In SBR compounds, however, the peak shrinkage stress of SBR with 30 phr filler content was higher than that of unfilled compounds. The expansion stress of carbon black filled NR was changed little, but that of filled SBR increased with increasing the filler content. The peak expansion stress of silica filled NR and SBR vulcanizates increased with increasing silica content.