• Title/Summary/Keyword: Carbon Fibers

Search Result 836, Processing Time 0.023 seconds

A Study on the Strength Safety of an Aluminium Liner for a Hydrogen Fuel Storage Tank (수소연료 저장탱크용 알루미늄 라이너의 강도안전성에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.16-21
    • /
    • 2012
  • In this study, the strength safety for 110 liter hydrogen fuel storage tank with 70MPa filling pressure has been analyzed using a FEM technique. The strength safety of a composite fuel tank in which is fabricated by an aluminum liner of 6061-T6 and carbon fiber wound composite layers of T800-24K and T700-12K of Toray, and MR60H-24P of Mitsubishi Ray has been investigated based on the criterion of a strength safety of US DOT-CFFC and Korean Standard. The FEM computed results on the strength safety of 70MPa hydrogen gas tank showed that the hydrogen fuel storage tank in which is fabricated by T800-24K and T700-12K of Toray, and MR60H-24P of Mitsubishi Ray is safe because those two carbon fibers have very similar material properties. But, the composite storage tank with a filling pressure of 70MPa in which is fabricated by T700-12K of Toray may not guaranty the strength safety, and thus this study recommends a composite hydrogen fuel tank under 60MPa.

Friction and Wear Properties of Fiber Reinforced Composite (섬유보강 복합재의 마찰 및 마모특성)

  • Ju, Hyeok-Jong;Choe, Don-Muk;O, In-Seok;Hong, Myeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.733-740
    • /
    • 1994
  • Oxidized-PAN fiber reinforced composite(OFRP), carbon fiber reinforced composite(CFRP), aramid fiber reinforced composite(AFRP), and glass fiber reinforced composite(GFRP) were fabricated with phenolic resin matrix by hot press molding. We tested the friction coefficient and wear rate varying with fiber weight fraction and observed the effect of fibers according to characteristics of individual reinforcement. When the amount of aramid fiber was 45wt%, average friction coefficient was maximum value of 0.353~0.383, where as, when the amount of pitch based carbon fiber was 45wt%, average friction coefficient was the lowest value of 0.164~0.190. The wear rate of AFRP and CFRP was low, but that of GFRP and OFRP increases drastically in the case of increasing of fiber weight fraction. Wear diagram of OFRP was unstable, but that of CFRP and AFRP was a bit stable. Through very unstable diagram of GFRP, we found that friction stability of GFRP was the lowest.

  • PDF

Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers

  • Feng, Hongwei;Shen, Daoming;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.711-731
    • /
    • 2020
  • This paper deals with free vibration of FG sandwich annular sector plates on Pasternak elastic foundation with different boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. The influence of carbon nanotubes (CNTs) waviness, aspect ratio, internal pores and graphene platelets (GPLs) on the vibrational behavior of functionally graded nanocomposite sandwich plates is investigated in this research work. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness of upper and bottom layers of the sandwich sectorial plates and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The core of structure is porous and the internal pores and graphene platelets (GPLs) are distributed in the matrix of core either uniformly or non-uniformly according to three different patterns. The elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. A semi-analytic approach composed of 2D-Generalized Differential Quadrature Method (2D-GDQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The new results can be used as benchmark solutions for future researches.

Preparation of Polyketone Micro/nanofiber Membrane based on Electrospinning Condition and Its Application in Oil-Water Separation (전기방사법의 제조 조건에 따른 폴리케톤 마이크로/나노섬유 분리막 제조 및 유수 분리 적용)

  • Hou, Jian;Yun, Jaehan;Park, Chanju;Choi, Jinwon;Jeon, Sungil;Lee, Chang Hyun;Byun, Hongsik
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.426-433
    • /
    • 2021
  • In this study, a novel material polyketone (PK) was chosen and PK micro/nano fiber membranes were fabricated via electrospinning method under various conditions. After that, the potential application in oil-water separation was thoroughly investigated. The surface of microfiber membrane formed under high humidity especially became much rougher than that formed under low humidity. When salt was added to the spinning solution, the diameter of fibers was reduced up to 90% and the nanofiber membranes could be formed. The oil/water emulsions were prepared and separated under gravity condition using the manufactured rPK-LNC and PK-H membranes. The separation characteristics was evaluated by measuring total organic carbon (TOC) and turbidity. Meanwhile, the changes in the physical properties of fiber membranes under various conditions and with or without salt, as well as the changes in oil water separation characteristics were also studied.

Free vibration analysis of a laminated trapezoidal plate with GrF-PMC core and wavy CNT-reinforced face sheets

  • Yingqun Zhang;Qian Zhao;Qi Han;N. Bohlooli
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.275-291
    • /
    • 2023
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) core and FG wavy CNT-reinforced face sheets. The porous graphene foam possessing 3D scaffold structures has been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the plate thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. It is explicated that 3D-GrF skeleton type and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. The plate's normalized natural frequency decreased and the straight carbon nanotube (w=0) reached the highest frequency by increasing the values of the waviness index (w).

An Investigation of Interfacial Strength in Epoxy-based Solid Polymer Electrolytes for Structural Composite Batteries

  • Mohamad A. Raja;Su Hyun Lim;Doyun Jeon;Hyunsoo Hong;Inyeong Yang;Sanha Kim;Seong Su Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.416-421
    • /
    • 2023
  • Multifunctional composite materials capable of both load-carrying and energy functions are promising innovative candidates for the advancement of contemporary technologies owing to their relative feasibility, cost-effectiveness, and optimized performance. Carbon fiber (CF)-based structural batteries utilize the graphitic inherent structure to enable the employment of carbon fibers as electrodes, current collectors, and reinforcement, while the matrix system is an ion-conduction and load transfer medium. Although it is possible to enhance performance through the modification of constituents, there remains a need for a systematic design methodology scheme to streamline the commercialization of structural batteries. In this work, a bi-phasic epoxy-based ionic liquid (IL) modified structural battery electrolyte (SBE) was developed via thermally initiated phase separation. The polymer's morphological, mechanical, and electrochemical characteristics were studied. In addition, the interfacial shear strength (IFSS) between CF/SBE was investigated via microdroplet tests. The results accentuated the significance of considering IFSS and matrix plasticity in designing composite structural batteries. This approach is expected to lay the foundation for realizing smart structures with optimized performance while minimizing the need for extensive trial and error, by paving the way for a streamlined computational design scheme in the future.

Development of Water-lubricated Plastic Bearings (수-윤활용 플라스틱 베어링 개발에 관한 연구)

  • Hosung Kong;Hung-gu Han
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.235-243
    • /
    • 2023
  • This paper presents the fabrication process of water-lubricated plastic bearings. Plastic bearings require good mechanical properties and tribological properties as well as elasticity and shock resistance, especially when lubricated in dirty water conditions. In this study, sleeve-type plastic bearings are produced by winding a prepreg sheet, which primary contains nitrile rubber (NBR)-modified epoxy, self-lubricating fillers, and various types of lattice-structured reinforcing fibers such as carbon, Aramid, and polyethylene terephthalate. A thermosetting epoxy is chemically modified with NBR to impart elasticity and low-friction characteristics in water conditions. Experimental investigations are conducted to examine the mechanical and tribological characteristics of the developed bearing materials, and the results are compared with the characteristics of a commercial plastic bearing (Thordon SXL), well known as a water-lubricated bearing. A Thordon bearing (mainly composed of polyurethane) exhibits an extremely low load-bearing capacity and is thus only suitable for medium loading (1~10MPa). The tribological characteristics of the test materials are evaluated through Falex block-on-ring (LFW-1) friction and wear tests. The results indicate that friction exhibited by the carbon-fiber-reinforced NBR-10wt.%-modified epoxy composite material, incorporated with the addition of 20wt.% UHMWPE and 6wt.% paraffin wax, is lower than that of the Thorden bearings, whereas its wear resistance surpass that of Thorden ones. Because of these features, the load carrying capacity of the fabricated composite (>10MPa) is higher than that of the Thorden bearings. These results confirm the applicability of water-lubricated plastic bearing materials developed in this study.

Using DQ method for vibration analysis of a laminated trapezoidal structure with functionally graded faces and damaged core

  • Vanessa Valverde;Patrik Viktor;Sherzod Abdullaev;Nasrin Bohlooli
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.73-91
    • /
    • 2024
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with a damaged core and FG wavy CNT-reinforced face sheets. A damage model is introduced to provide an analytical description of an irreversible rheological process that causes the decay of the mechanical properties, in terms of engineering constants. An isotropic damage is considered for the core of the sandwich structure. The classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for the trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. After demonstrating the convergence and accuracy of the method, different parametric studies for laminated trapezoidal structure including carbon nanotubes waviness (0≤w≤1), CNT aspect ratio (0≤AR≤4000), face sheet to core thickness ratio (0.1 ≤ ${\frac{h_f}{h_c}}$ ≤ 0.5), trapezoidal side angles (30° ≤ α, β ≤ 90°) and damaged parameter (0 ≤ D < 1) are carried out. It is explicated that the damaged core and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. Results show that by increasing the values of waviness index (w), normalized natural frequency of the structure decreases, and the straight CNT (w=0) gives the highest frequency. For an overall comprehension on vibration of laminated trapezoidal plates, some selected vibration mode shapes were graphically represented in this study.

Review of the Solid Propulsion Trend in the Launch Vehicle(1) (발사체 고체 추진기관 동향 리뷰(1))

  • Lee, Tae-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.97-107
    • /
    • 2012
  • In general, solid propulsion offers cost effective, large thrust capabilities comparing to the liquid propulsion which offers high specific impulse and restart capabilities. Therefore, solid propulsion is well fitted for the first stage and boosters. Building Block Launcher(BBL) approach has been studied for the launch vehicle because of cost effectiveness, limited development time and low risk. Using of the carbon fiber epoxy resin in the solid rocket motor case is expanded, and specially high strength fibers are more attracted since its inert mass reduction.

Fatigue Behavior of Cracked Al 6061-T6 Alloy Structures Repaired with Composite Patch

  • Yoon, Young-Ki;Park, Jong-Joon;Kim, Guk-Gi;Yoon, Hi-Seak
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.5-10
    • /
    • 2001
  • Due to the development of high-strength fibers and adhesives, it is now possible to repair cracked metallic plates by bonding reinforced patches to the plate over the crack. In this study, pre-cracked aluminum 6061-T6 alloy plates repaired with bonded carbon/epoxy composite patch are applied to investigate the effect of various patch shapes on the tensile strength and the fatigue behavior of the structure. A non-patch-boned cased and 2 type-50$\times$50, 40$\times$20 mm-composite patch-bonded cases were tested to obtain fracture loads and fatigue crack growth rate. The results showed that the patch-bonded repair improves the static strength by 17% and the fatigue life by 200% compared to non-repaired case. It means that patch-boned repair is more effective in the fatigue life. It was also revealed that the patching method along crack growth direction is more efficient in cost and weight reduction. By observing the fractography, patch-bonded repair specimens demonstrated zigzag fracture patterns compared with the non-patched specimens, which shows a typical ductile fracture.

  • PDF