• Title/Summary/Keyword: Carbon Fibers

Search Result 841, Processing Time 0.027 seconds

Resistance and Structural Safety of a 3M Carbon Fibier-based Kayak (3미터급 카본 카약의 저항성능 및 구조 안전성 연구)

  • Seo, Kwang-Cheol;Lee, Gyeong-Woo;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.482-488
    • /
    • 2019
  • Leisure and business facilities have been steadily developing in Korea. Among waterborne leisure vessels and equipment, the distribution and sale of kayaks and canoes have significantly increased. Previously, (FRP) materials were primarily employed for constructing kayaks. However, owing to global warming and depletion of natural resources, the demand for non-polluting renewable energy is rapidly increasing, which has increased the demand for carbon fibers. To meet the requirements of changing social consciousness, a carbon fiber-based commercial kayak was designed in this study. Resistance analysis and structural safety were conducted by employing software tool for verifying the reliability of the proposed kayak. The pressure resistance and frictional resistance were examined in a wide range of speed. Obtained results indicate that at speeds greater than 2.6 m/s, the pressure resistance significantly increases and the total resistance also increases. Furthermore, the results corroborate that the proposed kayak structure has a adequate safety with respect to the design loads that are considered during operating conditions.

Structural Performance of Reinforced Concrete Beams Strengthened with Sprayed Fiber Reinforced Polymers (Sprayed FRP로 보강된 철근콘크리트 보의 보강성능에 관한 연구)

  • Lee, Kang-Seok;Son, Young-Seon;Lee, Moon-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.421-431
    • /
    • 2007
  • The main purpose of this study is to develop a sprayed FRP repair and strengthening method, which is a new technique for strengthening the existing concrete structures by mixing one of the carbon or glass chopped fibers and one of the epoxy or vinyl ester resins with high-speed compressed air in open air and randomly spraying the mixture onto the concrete surface. At present, the sprayed FRP repair and strengthening method using the epoxy resin has not been fully discussed. In order to investigate the material property of the sprayed FRP, this study carried out tensile tests of the material specimens, which were changed with the combinations of various variables including the length of chopped fiber and the mixture ratio of chopped fiber and resin. These variables were set to have the equal material strength, compared with that of one layer of the FRP sheet. As a result, the optimal length of glass and carbon chopped fibers was fumed out to be 38 mm, and the optimal mixture ratio between chopped fiber and resin was also turned out to be 1 : 2 from each variable. And also, the thickness of the sprayed FRP to have the equal strength to one layer of the FRP sheet was finally calculated. In is study, a series of experiments were carried out to evaluate the strengthening effects of flexural beams, shear beams and damaged beams strengthened with the sprayed FRP method, respectively. The results revealed that the strengthening effects of the flexural and shear specimens were reasonably similar to those of the FRP sheet, and the developed Sprayed FRP technique is able to be used as a strengthening scheme of existing RC building.

Gas Adsorption Characteristics of by Interaction between Oxygen Functional Groups Introduced on Activated Carbon Fibers and Acetic Acid Molecules (활성탄소섬유에 도입된 산소작용기와 초산 분자와의 상호작용에 따른 가스 흡착 특성)

  • Song, Eun Ji;Kim, Min-Ji;Han, Jeong-In;Choi, Ye Ji;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.160-166
    • /
    • 2019
  • In this study, oxygen functional groups were introduced on activated carbon fibers (ACFs) by oxygen plasma treatment to improve the adsorption performance on an acetic acid which is a sick house syndrome induced gas. The active species was generated more as the flow rate of the oxygen gas increased during the plasma treatment. For this reason, the specific surface area (SSA) of the ACFs decreased with much more physical and chemical etching. In particular, the SSA of the sample (A-O60) injected with an oxygen gas flow rate of 60 sccm was reduced to about $1.198m^2/g$, which was about 6.95% lower than that of the untreated samples. On the other hand, the oxygen content introduced into the surface of ACFs increased up to 35.87%. Also, the adsorption performance on the acetic acid gas of the oxygen plasma-treated ACFs was improved by up to 43% compared to that of using the untreated ACFs. It is attributed to the formation of the hydrogen bonding due to the dipole moments between acetic acid molecules and oxygen functional groups such as O=C-O introduced by the oxygen plasma treatment.

Improvement of Physical Properties for Carbon Fiber/PA 6,6 Composites (탄소섬유/폴리아마이드 6,6 복합재료의 기계적 물성 향상)

  • Song, Seung A;On, Seung Yoon;Park, Go Eun;Kim, Seong Su
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.365-370
    • /
    • 2017
  • Mechanical properties of carbon fiber reinforced thermoplastic composites (CFRTPs) are affected by various factors. One of the them are poor compatibility of the epoxy sizing layer on the carbon fiber surface with thermoplastic matrix, which causes the inferior interfacial strength between fibers and matrix. In addition, the high molten-viscosity of thermoplastics attributes to the poor impregnation state. Consequently, many voids in the composite materials were generated, which leads to poor mechanical properties of the thermoplastic composites. In this study, the epoxy sizing on the carbon fiber surface was removed and the polyamide 6,6 solution was coated on the de-sized carbon fiber surface to improve the impregnation state and mechanical properties. Interlaminar shear strength (ILSS) of CFRPTs was estimated by implementing short beam shear tests. In addition, flexural strength was measured and the impregnation state of the composites was evaluated by calculating void content.

A Study on the Effents of High Temperature Heat Treatment on the Physical and Mechanical Properities of Carbon Fiber and Carbon Composites (탄소섬유 및 탄소복합재의 물리적/기계적 특성에 대한 고온열처리의 영향 연구)

  • Kim, Dong-Gyu;Ha, Heon-Seung;Park, In-Seo;Im, Yeon-Su;Yun, Byeong-Il
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.287-294
    • /
    • 1994
  • PAN-based carbon fiber roving and fabric were heat treated at the temperature of $2170^{\circ}C$. Using non-heat treated and heat treated fabric, greenbodies of CFRP and GFRP were manufactured in the Autoclave. After the analysis of heat treated and non-heat treated carbon fiber roving and two types of greenbodies, the variations of physical and mechanical properties of carbon fibers and greenbodies with heat treatment were studied. Observing the cross-section of carbon fiber with SEM, we knew the diameter of carbon fiber was decreased from 6.8gm to 6.4p1. The results of TGA showed that the oxidation resistence was enhanced after heat treatment. The tensile strength of carbon fiber was decreased from (3.11$\pm 0.32)\times 10^3$ MPa to (1.87$\pm 0.26)\times 10^3$MPa, but tensile modulus was increased from (1.94$\pm 0.06)\times 10^5$ MPa to (2.02$\pm 0.11)\times 10^5$MPa after heat treatment. The interlaminar shear strengths of CFRP and GFRP were 148.8$\pm$1.6Mpa and 82.2$\pm$1.1Mpa, respectively. Torch test showed that CFRP was abraded smoothly but GFRP was delaminated.

  • PDF

Properties of Nanocomposites Based on Polymer Blend Containing PVDF, Carbon Fiber and Carbon Nanotube (PVDF를 포함한 고분자 블렌드와 탄소섬유/탄소나노튜브를 이용한 복합재료의 특성)

  • Kim, Jeong Ho;Son, Kwonsang;Lee, Minho
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.14-19
    • /
    • 2014
  • Nanocomposites based on poly(methyl methacrylate) (PMMA)/poly(vinylidene fluoride) (PVDF) and poly(ethylene terephthalate) (PET)/(PVDF) blended with carbon fibers (CF) and carbon nanotube (CNT) were prepared by melt mixing in the twin screw extruder. Morphologies of the PMMA/PVDF/CF/CNT and PET/PVDF/CF/CNT nanocomposites were investigated using SEM. The aggregation of CNT was observed in PMMA/PVDF/CF/CNT nanocomposites while the good dispersion of CNT was shown in PET/PVDF/CF/CNT nanocomposites. In SEM image of PET/PVDF/CF/CNT nanocomposite, the CNT were mainly located at the PET domain of phase-separated PET/PVDF blend due to the ${\pi}-{\pi}$ interaction between the phenyl ring of PET and graphite sheet of the CNT's surface. In addition, a fairly good compatibility between PET/PVDF matrix and CF was shown in the SEM image. In the case of PET/PVDF nanocomposites blended with the co-addition of CF and CNT, the volume electrical resistivity decreased while no change was observed in PMMA/PVDF/CF/CNT composites. The degree of CNT dispersion in morphology results was consistent with the electrical conductivity results. From the DSC results, the crystallization temperature (Tc) of PET/PVDF/CF/CNT nanocomposites increased due to the co-addition of CF and CNTs acting as a nucleating agent. Flexural modulus of PET/PVDF/CF/CNT were sharply enhanced due to increasing the interaction between PET and CF.

The Roles of Reinforcing Fibers on the Performance of Automotive Brake Pads (자동차용 마찰재의 성능에 미치는 강화섬유의 역할)

  • Lim, Hyun-Woo;Yoon, Ho-Gyu;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.173-179
    • /
    • 2000
  • The friction and wear characteristics of brake friction materials reinforced with aramid fiber, carbon fiber, glass fiber, and potassium titanate whiskers were investigated using a pad-on-disk type friction tester. In particular, the morphology of rubbing surfaces was carefully investigated to correlate the friction performance and properties of transfer films. The aramid fiber reinforced specimen showed severe oscillation of friction coefficient at low speed and low applied pressure. The carbon fiber reinforced specimen showing better friction stability exhibited uniform and stable transfer film than any other specimens. The glass fiber reinforced specimen showed unstable friction changes at high speed and high-applied pressure and the non-uniform transfer film was observed in both friction material and rotor surface. The potassium titanate whiskers reinforced specimen showed stable coherent transfer film. The wear test exhibited the potassium titanate whiskers reinforced specimen was lowest in wear amount and glass fiber reinforced specimen showed the severe wear.

  • PDF

Simultaneous Removal Characteristics of Particulate and Elemental Mercury in Convergence Particulate Collector (융합형여과집진장치에서의 먼지입자와 원소수은의 제거 성능 특성)

  • Park, Young Ok;Jeong, Ju Yeong
    • Particle and aerosol research
    • /
    • v.6 no.4
    • /
    • pp.173-183
    • /
    • 2010
  • The high temperature pleated filter bags which were used during this study were made of pleated nonwoven fabric of heat and acid resistant polysulfonate fibers which can withstand the heat up to $300^{\circ}C$ and have a filtration area which is 3 to 5 times larger than the conventional round filter bags. Cartridge module packed with 3 kind of the sulfur impregnated activated-carbon based sorbents were inserted in the inner of the pleated filter bag. This type of pleated filter bag was designed to remove not only the particulate matter but also the gaseous elemental mercury. The electrostatic precipitator part can enhance the particulate removal efficiency and reduce the pressure drop of the pleated filter bag by agglomerated particles to form a more porous dust layer on the surface of the pleated bag which is increased the filter bag cleaning efficiency. In addition, the most of particles are separated from the flue gas stream through the cyclone and the electrostatic precipitator part which were installed at the lower part and main body part of the convergence particulate collector, respectively. Thus reduce particulate loading of the high temperature pleated filter bags were applied in this study to analyze the removal characteristics of particulate matter and gaseous elemental mercury.

Strain behavior of carbon fibers during hot stretching (탄소섬유의 고온 연신 열처리에서의 변형 거동)

  • 김홍수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.64-69
    • /
    • 1999
  • Polyacrylonitrile(PAN)-based carbon fiber tows were heat-treated by the internal resistance heating method under the certain load. To consider the strain behavior of the fiber tows during heat-treatments, 1200~$2200^{\circ}C$, strain changes of those were measured. It was observed that the larger longitudinal strain was induced under the larger stretching stress. The changes in the strain are different from the temperature regions below and above $1700^{\circ}C$. Obtained apparent activation energies under the stretching stresses of 70 and 322 MPa from time-strain curves were 67.46 and 52.27kJ$mol^{-1}$, respectively. Therefore, it was known that the larger stretching stresses effectively reduce the apparent activation energy of the fiber structure development of the fiber tows.

  • PDF

KOH-activated graphite nanofibers as CO2 adsorbents

  • Yuan, Hui;Meng, Long-Yue;Park, Soo-Jin
    • Carbon letters
    • /
    • v.19
    • /
    • pp.99-103
    • /
    • 2016
  • Porous carbons have attracted much attention for their novel application in gas storage. In this study, porous graphite nano-fiber (PGNFs)-based graphite nano fibers (GNFs) were prepared by KOH activation to act as adsorbents. The GNFs were activated with KOH by changing the GNF/KOH weight ratio from 0 through 5 at 900℃. The effects of the GNF/KOH weight ratios on the pore structures were also addressed with scanning electron microscope and N2 adsorption/desorption measurements. We found that the activated GNFs exhibited a gradual increase of CO2 adsorption capacity at CK-3 and then decreased to CK-5, as determined by CO2 adsorption isotherms. CK-3 had the narrowest micropore size distribution (0.6–0.78 nm) among the treated GNFs. Therefore, KOH activation was not only a significant method for developing a suitable pore-size distribution for gas adsorption, but also increased CO2 adsorption capacity as well. The study indicated that the sample prepared with a weight ratio of ‘3’ showed the best CO2 adsorption capacity (70.8 mg/g) as determined by CO2 adsorption isotherms at 298 K and 1 bar.