• 제목/요약/키워드: Carbon Fiber Epoxy Composite

검색결과 361건 처리시간 0.023초

메탈 파우더와 나노 카본 블랙/섬유강화 복합재료의 전자파 차폐효과에 관한 연구 (A Study on Electromagnetic Interference Shielding Effectiveness of the Metal Powders and Nano Carbon black /Fiber Reinforced Epoxy composites)

  • 한길영;김진석;안동규
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.100-107
    • /
    • 2006
  • The objective of this research is to investigate the electromagnetic interference(EMI) shielding characteristics of fiber reinforced composites. We fabricated glass and carbon fiber reinforced composites filled with metal powder and nano carbon black. The measurements of shielding effectiveness(SE) were carried out frequency range 300MHz - 1GHz for commercial purposes such as electric or telecommunication devices. The return loss and loss due to absorption were also measured as a function of frequency in the micro wave(300MHz-1GHz) region. It is observed that the SE of the composites is the frequency dependent, increase with the increases in filler loading. The Mg metal powder filled composite showed higher SE compared to that of carbon black. The Mg metal powder/epoxy composite was shown to exhibit up to 40dB of SE. The results indicates that the composite having higher filler loading can be used for the purpose of EMI shielding as well as for some microwave applications.

반응표면분석법을 이용한 FRP Leaf Spring의 최적설계 (Optimal Design of FRP Taper Spring Using Response Surface Analysis)

  • 임동진;이윤기;김민호;윤희석
    • Composites Research
    • /
    • 제17권2호
    • /
    • pp.1-8
    • /
    • 2004
  • 본 논문은 겹판 스프링의 정적 스프링 상수를 가지고 복합재료 데이퍼 스프링을 최적설계 하였다. 두께와 폭을 설계변수로 실정하였다. 회귀모형의 목적함수는 상용 해석 프로그램을 통해 얻었다. 회귀모형의 함수를 가지고 회귀계수를 계산한 후, DOT를 이용하여 최적해를 구하였다. 설계에 이용된 복합재료로는 E-glass/epoxy와 carbon/epoxy를 선정하였고 겹판 스프링과 비교 해석하였다. 그 결과 정적 스프링 상수는 최적화된 복합재료 스프링들과 겹판 스프링이 1%내로 일치함을 보였다.

전자기파 흡수용 복합재료의 기계적 강도평가 (Mechanical Properties Evaluation of Composites for Electromagnetic Waves Absorption)

  • 오정훈;김천곤;홍창선
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.105-108
    • /
    • 2002
  • Materials, matrices mixed with various kinds of conductive or magnetic powder, such as ferrite, have been used as the electromagnetic wave absorbing ones, so called RAM(radar absorbing material). The structure that does not only have electromagnetic waves absorbing property like RAM but also supports loads is called RAS(radar absorbing structure). One of the existing manufacturing process of RAS is to compound with conductive powders the glass fiber-reinforced composite with good permeability and the ability to support loads. The process, however, causes a number of problems, such as the degradation in the mechanical properties of the composite, especially, interlamina shear strength. In this study, mechanical properties of glass fabric/epoxy composite containing 7wt% carbon black powders were measured and compared with pure glass fabric/epoxy composites.

  • PDF

고온 등온환경하의 탄소섬유/에폭시 단일방향 복합재료의 열화 예측모델 개발 (Study on Thermal Degradation Behavior of Unidirectional Carbon Fiber/Epoxy Composite Due to Isothermal Environment)

  • 정기모;최흥섭;김창호;한중원;남재도
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.43-47
    • /
    • 2002
  • Weight loss experiments have been performed for unidirectional carbon fiber/epoxy laminates under both isothermal and cyclic thermal conditions. It was found that weight losses were the result of both specimen-geometry dependent oxidative degradation and volumetric geometry dependent thermal degradation. Thermal degradation was found to play a major role in the overall weight loss process, and photomicrographs of cross-sectioned, aged specimens confirmed this fact. A method to predict the effect of isothermal environment on the weight loss was introduced and found to be in good agreement with experimental data at temperatures near Tg (glass transition temperature).

  • PDF

탄소섬유 에폭시 복합재료 제조의 전문가시스템 연구 (Expert Cure System for the Carbon Fiber Epoxy Composite Materials)

  • 최진호;이대길
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1773-1782
    • /
    • 1994
  • In this paper, the expert cure system for carbon fiber epoxy composite materials, which controls the temperature and pressure of the autoclave according to the several rules, was developed to manufacture better composite products in shorter curing time. The rules were based on the on-line measured quantities such as the dielectric properties and temperature of the composites and the pressure of the autoclave. The curing time and the mechanical properties of the composite materials manufactured with the expert cure system were compared to those of the specimens manufactured with the conventional cure cycle.

열경화성수지 복합재료의 경화정도의 측정에 관한 연구 (Measurement of the Degree of Cure of Thermosetting Resin Matrix Composite Materials)

  • 김진수;이대길
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2154-2164
    • /
    • 1995
  • In this study, a dielectric cure monitoring system which consists of an electric circuit, a sensor and a personal computer was developed to on-line monitor the dielectric properties of carbon fiber epoxy composite materials. Also, the kinetic model of carbon fiber epoxy composite materials was developed by curve fitting of differential scanning calorimetry data. The start and end points of cure and the relationship between the dissipation factor and the degree of cure were obtained by comparing the dissipation factor from the dielectric properties with the degree of cure from the DSC data. The relationship between the dissipation factor and the degree of cure was tested under various temperature profiles.

Subscale Main Wing Design and Manufacturing of WIG Vehicle Using Carbon Fiber Composites

  • Park, Hyun-Bum
    • International Journal of Aerospace System Engineering
    • /
    • 제4권2호
    • /
    • pp.1-4
    • /
    • 2017
  • This work dealt with design and manufacturing of WIG vehicle wing using carbon/epoxy composite materials. In this study, structural design and analysis of carbon composite structure for WIG craft were performed. Firstly, structural design requirement of wing for WIG vehicle was investigated. After structural design, the structural analysis of the wing was performed by the finite element analysis method. It was performed that the stress, displacement and buckling analysis at the applied load condition. And also, manufacturing of subscale wing using carbon/epoxy composite materials was carried out. After structural test of target structure, structural test results were compared with analysis results. Through the structural analysis and test, it was confirmed that the designed wing structure is safety.

Sports balls made of nanocomposite: investigating how soccer balls motion and impact

  • Ling Yang;Zhen Bai
    • Advances in nano research
    • /
    • 제16권4호
    • /
    • pp.353-363
    • /
    • 2024
  • The incorporation of nanoplatelets in composite and polymeric materials represents a recent and innovative approach, holding substantial promise for diverse property enhancements. This study focuses on the application of nanocomposites in the production of sports equipment, particularly soccer balls, aiming to bridge the gap between theoretical advancements and practical implications. Addressing the longstanding challenge of suboptimal interaction between carbon nanofillers and epoxy resin in epoxy composites, this research pioneers inventive solutions. Furthermore, the investigation extends into unexplored territory, examining the integration of glass fiber/epoxy composites with nanoparticles. The incorporation of nanomaterials, specifically expanded graphite and graphene, at a concentration of 25.0% by weight in both the epoxy structure and the composite with glass fibers demonstrates a marked increase in impact resistance compared to their nanomaterial-free counterparts. The research transcends laboratory experiments to explore the practical applications of nanocomposites in the design and production of sports equipment, with a particular emphasis on soccer balls. Analytical techniques such as infrared spectroscopy and scanning electron microscopy are employed to scrutinize the surface chemical structure and morphology of the epoxy nanocomposites. Additionally, an in-depth examination of the thermal, mechanical, viscoelastic, and conductive properties of these materials is conducted. Noteworthy findings include the efficacy of surface modification of carbon nanotubes in preventing accumulation and enhancing their distribution within the epoxy matrix. This optimization results in improved interfacial interactions, heightened thermal stability, superior mechanical properties, and enhanced electrical conductivity in the nanocomposite.

Characterization of Nonlinear Behaviors of CSCNT/Carbon Fiber-Reinforced Epoxy Laminates

  • Yokozeki, Tomohiro;Iwahori, Yutaka;Ishibashi, Masaru;Yanagisawa, Takashi
    • Advanced Composite Materials
    • /
    • 제18권3호
    • /
    • pp.251-264
    • /
    • 2009
  • Nonlinear mechanical behaviors of unidirectional carbon fiber-reinforced plastic (CFRP) laminates using cup-stacked carbon nanotubes (CSCNTs) dispersed epoxy are evaluated and compared with those of CFRP laminates without CSCNTs. Off-axis compression tests are performed to obtain the stress-strain relations. One-parameter plasticity model is applied to characterize the nonlinear response of unidirectional laminates, and nonlinear behaviors of laminates with and without CSCNTs are compared. Clear improvement in stiffness of off-axis specimens by using CSCNTs is demonstrated, which is considered to contribute the enhancement of the longitudinal compressive strength of unidirectional laminates and compressive strength of multidirectional laminates. Finally, longitudinal compressive strengths are predicted based on a kink band model including the nonlinear responses in order to demonstrate the improvement in longitudinal strength of CFRP by dispersing CSCNTs.

Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils

  • Beylergil, Bertan;Tanoglu, Metin;Aktas, Engin
    • Steel and Composite Structures
    • /
    • 제31권2호
    • /
    • pp.113-123
    • /
    • 2019
  • In this study, carbon fiber/epoxy (CF/EP) composites were interleaved with aramid nonwoven veils with an areal weight density of $8.5g/m^2$ to improve their Mode-I fracture toughness. The control and aramid interleaved CF/EP composite laminates were manufactured by VARTM in a [0]4 configuration. Tensile, three-point bending, compression, interlaminar shear, Charpy impact and Mode-I (DCB) fracture toughness values were determined to evaluate the effects of aramid nonwoven fabrics on the mechanical performance of the CF/EP composites. Thermomechanical behavior of the specimens was investigated by Dynamic Mechanical Analysis (DMA). The results showed that the propagation Mode-I fracture toughness values of CF/EP composites can be significantly improved (by about 72%) using aramid nonwoven fabrics. It was found that the main extrinsic toughening mechanism is aramid microfiber bridging acting behind the crack-tip. The incorporation of these nonwovens also increased interlaminar shear and Charpy impact strength by 10 and 16.5%, respectively. Moreover, it was revealed that the damping ability of the composites increased with the incorporation of aramid nonwoven fabrics in the interlaminar region of composites. On the other hand, they caused a reduction in in-plane mechanical properties due to the reduced carbon fiber volume fraction, increased thickness and void formation in the composites.