• Title/Summary/Keyword: Carbon Dioxide Capture

Search Result 204, Processing Time 0.019 seconds

Development of Life Science and Biotechnology by Marine Microorganisms (해양 미생물을 활용한 생명과학 및 생명공학 기술 개발)

  • Yongjoon Yoon;Bohyun Yun;Sungmin Hwang;Ki Hwan Moon
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.593-604
    • /
    • 2023
  • The ocean accounts for over 70% of the Earth's surface and is a space of largely unexplored unknowns and opportunities. Korea is a peninsula surrounded by the sea on three sides, emphasizing the importance of marine research. The ocean has an extremely complex environment with immense biological diversity. In terms of microbiology, the marine environment has varying factors like extreme temperature, pressure, solar radiation, salt concentration, and pH, providing ecologically unique habitats. Due to this variety, marine organisms have very different phylogenetic classifications compared with terrestrial organisms. Although various microorganisms inhabit the ocean, studies on the diversity, isolation, and cultivation of marine microorganisms and the secondary metabolites they produce are still insufficient. Research on bioactive substances from marine microorganisms, which were rarely studied until the 1990s, has accelerated in terms of natural products from marine Actinomycetes since the 2000s. Since then, industries for bioplastic and biofuel production, carbon dioxide capture, probiotics, and pharmaceutical discovery and development of antibacterial, anticancer, antioxidant, and anti-inflammatory drugs using bacteria, archaea, and algae have significantly grown. In this review, we introduce current research findings and the latest trends in life science and biotechnology using marine microorganisms. Through this article, we hope to create consumer awareness of the importance of basic and applied research in various natural product-related discovery fields other than conventional pharmaceutical drug discovery. The article aims to suggest pathways that may boost research on the optimization and application of future marine-derived materials.

Effect of Molecular Weight Distribution of Intrinsically Microporous Polymer (PIM-1) Membrane on the CO2 Separation Performance (마이크로기공 고분자(PIM-1)의 분자량 분포에 따른 이산화탄소 기체 분리막의 성능 변화 연구)

  • Ji Min Kwon;Hye Jeong Son;Jin Uk Kim;Chang Soo Lee
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.362-368
    • /
    • 2023
  • This research article explores the application of Polymer of Intrinsic Microporosity (PIM-1) as a cutting-edge material for CO2 gas separation membranes in response to the escalating global concern over climate change and the imperative to reduce greenhouse gas emissions. The study delves into the synthesis, molecular weight control, and fabrication of PIM-1 membranes, providing comprehensive insights through various characterization techniques. The intrinsic microporosity of PIM-1, arising from its unique crosslinked and rigid structure, is harnessed for selective gas permeation, particularly of carbon dioxide. The article emphasizes the tunable chemical properties of PIM-1, allowing for customization and optimization of gas separation membranes. By controlling the molecular weight, higher molecular weight (H-PIM-1) membranes are demonstrated to exhibit superior CO2 permeability and selectivity compared to lower molecular weight counterparts (L-PIM-1). The study's findings highlight the critical role of molecular weight in tailoring PIM-1 membrane properties, contributing to the advancement of next-generation membrane technologies for efficient and selective CO2 capture-an essential step in addressing the pressing global challenge of climate change.

Mineralogical Analysis of Calcium Silicate Cement according to the Mixing Rate of Waste Concrete Powder (폐콘크리트 미분말 치환율에 따른 이산화탄소 반응경화 시멘트의 광물상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.181-191
    • /
    • 2024
  • In the realm of cement manufacturing, concerted efforts are underway to mitigate the emission of greenhouse gases. A significant portion, approximately 60%, of these emissions during the cement clinker sintering process is attributed to the decarbonation of limestone, which serves as a fundamental ingredient in cement production. Prompted by these environmental concerns, there is an active pursuit of alternative technologies and admixtures for cement that can substitute for limestone. Concurrently, initiatives are being explored to harness technology within the cement industry for the capture of carbon dioxide from industrial emissions, facilitating its conversion into carbonate minerals via chemical processes. Parallel to these technological advances, economic growth has precipitated a surge in construction activities, culminating in a steady escalation of construction waste, notably waste concrete. This study is anchored in the innovative production of calcium silicate cement clinkers, utilizing finely powdered waste concrete, followed by a thorough analysis of their mineral phases. Through X-ray diffraction(XRD) analysis, it was observed that increasing the substitution level of waste concrete powder and the molar ratio of SiO2 to (CaO+SiO2) leads to a decrease in Belite and γ-Belite, whereas minerals associated with carbonation, such as wollastonite and rankinite, exhibited an upsurge. Furthermore, the formation of gehlenite in cement clinkers, especially at higher substitution levels of waste concrete powder and the aforementioned molar ratio, is attributed to a synthetic reaction with Al2O3 present in the waste concrete powder. Analysis of free-CaO content revealed a decrement with increasing substitution rate of waste concrete powder and the molar ratio of SiO2/(CaO+SiO2). The outcomes of this study substantiate the viability of fabricating calcium silicate cement clinkers employing waste concrete powder.

Theoretical Study on Optimal Conditions for Absorbent Regeneration in CO2 Absorption Process (이산화탄소 흡수 공정에서 흡수액 최적 재생 조건에 대한 이론적 고찰)

  • Park, Sungyoul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1002-1007
    • /
    • 2012
  • The considerable portion of energy demand has been satisfied by the combustion of fossil fuel and the consequent $CO_2$ emission was considered as a main cause of global warming. As a technology option for $CO_2$ emission mitigation, absorption process has been used in $CO_2$ capture from large scale emission sources. To set up optimal operating parameters in $CO_2$ absorption and solvent regeneration units are important for the better performance of the whole $CO_2$ absorption plant. Optimal operating parameters are usually selected through a lot of actual operation data. However theoretical approach are also useful because the arbitrary change of process parameters often limited for the stability of process operation. In this paper, a theoretical approach based on vapor-liquid equilibrium was proposed to estimate optimal operating conditions of $CO_2$ absorption process. Two $CO_2$ absorption processes using 12 wt% aqueous $NH_3$ solution and 20 wt% aqueous MEA solution were investigated in this theoretical estimation of optimal operating conditions. The results showed that $CO_2$ loading of rich absorbent should be kept below 0.4 in case of 12 wt% aqueous $NH_3$ solution for $CO_2$ absorption but there was no limitation of $CO_2$ loading in case of 20 wt% aqueous MEA solution for $CO_2$ absorption. The optimal regeneration temperature was determined by theoretical approach based on $CO_2$ loadings of rich and lean absorbent, which determined to satisfy the amount of absorbed $CO_2$. The amount of heating medium at optimal regeneration temperature is also determined to meet the difference of $CO_2$ loading between rich and lean absorbent. It could be confirmed that the theoretical approach, which accurately estimate the optimal regeneration conditions of lab scale $CO_2$ absorption using 12 wt% aqueous $NH_3$ solution could estimate those of 20 wt% aqueous MEA solution and could be used for the design and operation of $CO_2$ absorption process using chemical absorbent.