• Title/Summary/Keyword: Carbon Dioxide($CO_2$) Emission

Search Result 322, Processing Time 0.024 seconds

Estimation of CO2 Emission from a Eutrophic Reservoir in Temperate Region (온대지역 부영양 저수지의 이산화탄소 배출량 산정)

  • Chung, Se-Woong;Yoo, Ji-Su;Park, Hyung-Seok;Schladow, S. Geoffrey
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.433-441
    • /
    • 2016
  • Many large dams have been constructed for water supply, irrigation, flood control and hydropower in Korea for the last century. Meanwhile, recent studies indicated that the artificial reservoirs impounded by these dams are major sources of carbon dioxide (CO2) to the atmosphere and relevant to global budget of green house gases. However, limited information is available on the seasonal variations of CO2 evasion from the reservoirs located in the temperate monsoon regions including Korea. The objectives of this study were to estimate daily Net Atmospheric Flux (NAF) of CO2 in Daecheong Reservoir located in Geum River basin of Korea, and analyze the influencing parameters that characterize the variation of NAF. Daily pH and alkalinity (Alk) data collected in wet year (2012) and dry year (2013) were used for estimating the NAFs in the reservoir. The dissolved inorganic carbon (DIC) was computed using the pH and Alk measurements supposing an equilibrium state among the carbonate species. The results showed seasonal variations of NAF; negative NAFs from May to October when the primary production of the reservoir increased with water temperature increase, while positive NAF for the rest of the period. Overall the reservoir acted as sources of CO2 to the atmosphere. The estimated NAFs were 2,590 and 771 mg CO2 m-2d-1 in 2012 and 2013, respectively, indicating that the NAFs vary a large extent for different hydrological years. Statistical analysis indicated that the NAFs are negatively correlated to pH, water temperature, and Chl-a concentration of the reservoir.

An Analysis on the $CO_2$ Reduction and Sequestration Technology using the AHP (AHP를 이용한 $CO_2$ 저감 및 처리기술 분석)

  • 이덕기;최상진;박수억;하영진;이정태
    • Journal of Energy Engineering
    • /
    • v.13 no.3
    • /
    • pp.219-227
    • /
    • 2004
  • World have been encouraged to develop technologies that contribute to CO$_2$ emission reduction for many years. Those technologies can be categorized into capture, storage or sequestration, utilization, etc. There have been lots of efforts, in Korea, to develop the technology as well. In this paper, the impact factors of the technologies, especially in CDRS (Carbon Dioxide Reduction & Sequestration Center), were selected and were weighed by SMM (Storing Models Method) and AHP (Analytic Hierarchy Process) in order to evaluate the four representative areas of the technologies.

Carbon Capture and CO2/CH4 Separation Technique Using Porous Carbon Materials (다공성 탄소재료를 이용한 CO2 포집 및 CO2/CH4 분리 기술)

  • Cho, Se Ho;Bai, Byong Chol;Yu, Hye-Ryeon;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.343-347
    • /
    • 2011
  • Due to the strong dependence on fossil fuels within the history of human progress, it leads to disaster of the whole world like flood, shortage of water and extinction of the species. In order to curb carbon dioxide emissions, many technologies are being developed. Among them, porous carbon materials have important advantages over other absorbent, such as high surface area, thermal and chemical resistance, low cost, various pore distribution and low energy requirement for their regeneration. Carbon capture and storage (CCS) has attracted the significant research efforts for reducing green house gas emission using several absorbent and process. Moreover, the absorbent are used for the separation of bio mass gas that contains methane which is considered a promising fuel as new green energy resource. In this review, we summarized the recent studies and trend about the porous carbon materials for CCS as well as separation from the biogas.

Evaluating the Applicability of the DNDC Model for Estimation of CO2 Emissions from the Paddy Field in Korea (전국 논 토양 이산화탄소 배출량 추정을 위한 DNDC 모형의 국내 적용성 평가)

  • Hwang, Wonjae;Kim, Yong-Seong;Min, Hyungi;Kim, Jeong-Gyu;Cho, Kijong;Hyun, Seunghun
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.1
    • /
    • pp.13-20
    • /
    • 2017
  • Greenhouse gas emission from agricultural land is recognized as an important factor influencing climatic change. In this study, the national $CO_2$ emission was estimated for paddy soils, using soil GHG emission model (DNDC) with $1km^2$ scale. To evaluate the applicability of the model in Korea, verification was carried out based on field measurement data using a closed chamber. The total national $CO_2$ emission in 2015 was estimated at $5,314kt\;CO_2-eq$, with the emission per unit area ranging from $2.2{\sim}10.0t\;CO_2-eq\;ha^{-1}$. Geographically, the emission of Jeju province was particularly high, and the emission from the southern region was generally high. The result of the model verification analysis with the field data collected in this study (n=16) indicates that the relation between the field measurement and the model prediction was statistically similar (RMSE=22.2, ME=0.28, and $r^2=0.53$). More field measurements under various climate conditions, and subsequent model verification with extended data sets, are further required.

An empirical investigation of nuclear energy consumption and carbon dioxide (CO2) emission in India: Bridging IPAT and EKC hypotheses

  • Danish, Danish;Ozcan, Burcu;Ulucak, Recep
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2056-2065
    • /
    • 2021
  • The transition toward clean energy is an issue of great importance with growing debate in climate change mitigation. The complex nature of nuclear energy-CO2 emissions nexus makes it difficult to predict whether or not nuclear acts as a clean energy source. Hence, we examined the relationship between nuclear energy consumption and CO2 emissions in the context of the IPAT and Environmental Kuznets Curve (EKC) framework. Dynamic Auto-regressive Distributive Lag (DARDL), a newly modified econometric tool, is employed for estimation of long- and short-run dynamics by using yearly data spanning from 1971 to 2018. The empirical findings of the study revealed an instantaneous increase in nuclear energy reduces environmental pollution, which highlights that more nuclear energy power in the Indian energy system would be beneficial for climate change mitigation. The results further demonstrate that the overarching effect of population density in the IPAT equation stimulates carbon emissions. Finally, nuclear energy and population density contribute to form the EKC curve. To achieving a cleaner environment, results point out governmental policies toward the transition of nuclear energy that favours environmental sustainability.

A Study on the Potential of CO2 Emissions Reduction Recycled Aggregate according to Transportation Plan of Waste Concrete - Focused on Daegu City and Kyungpook Area - (폐콘크리트의 수송계획에 따른 순환골재의 CO2 배출량 저감 가능성에 관한 연구 - 대구·경북지역을 중심으로 -)

  • Kim, Tae Hyun;Cha, Gi Wook;Hong, Won Hwa
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.131-138
    • /
    • 2014
  • The recent interests in securing alternative resource have increased due to environmental issues and exhaustion of natural resources. The government notices production of recycled aggregate using waste concrete as the substitute of the natural aggregate. However, It's important to reduce environmental burden being inevitably made in the process producing recycled aggregate. In this study, the scenarios of transportation distance were set in the transportation phase of production of recycled aggregate. In addition, The possibility of emissions and reduction of carbon dioxide were studied depending on the scenarios. For this study, data about a amount of waste concrete, transportation distance, kind of vehicle, the number of required vehicle, fuel efficiency of vehicle and etc were gathered from 15 companies of intermediate treatment and 60 constructions sites located in Daegu city and Kyungpook area. Based on those data, fuel consumptions and $CO_2$ emissions according to the transportation scheme of waste concrete were calculated. As a result of the study, the emission of carbon dioxide was possible to be reduced by 27.8~75.4% depending on the scenarios of transportation distance.

A Study on Diesel Engine Performance with Ar and $CO_2$ Addition (Ar과 $CO_2$ 첨가에 따른 디젤기관의 성능에 관한 연구)

  • 정영식;이상만;채재우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.93-99
    • /
    • 1997
  • The re quest to develop the engines that are able to run without air or with very little oxygen condition is raised with the interest of ocean science or the mines. This research had already be gun before the world war II, but had been stagnant owing to the appearance of nuclear power. Recycle diesel engines have ability to run under the above mentioned condition the recycle diesel engine recirculates exhaust gases into intake port and consumes additional oxygen supplied by oxygen tank. Carbon dioxide is controlled by the absorber. The combustion and emission characteristics of recycle diesel engines are quite different with conventional one because the working fluids of recycle diesel engines consist of Ar, $CO_2$ and $O_2$ as well as $N_2$. Recycle diesel engine is therefore different with general diesel engine from the viewpoint of intake air composition. It is required to investigate the effect of intake composition in the combustion and emission to know recycle diesel engine. In this study, NOx concentration, smoke and cylinder pressure are measured with the variation of Ar and $CO_2$ Reduces show that the addition of Ar reduces NOx but increases smoke. Otherwise $CO_2$ reduces smoke and NOX simultaneously. Only $CO_2$ increases the ignition delay and both gases increase fuel consumption Ar addition is superior to $CO_2$ addition for the performance of recycle diesel engine system but $CO_2$ has the avantage with respect to emission.

  • PDF

LCCO2 analysis of wood-containing printing paper by mixed ratio of de-inked pulp and BTMP (DIP 및 BTMP 혼합비율에 따른 인쇄용지의 LCCO2 분석)

  • Seo, Jin Ho;Kim, Hyoung Jin;Chung, Sung Hyun;Park, Kwang Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.2
    • /
    • pp.46-55
    • /
    • 2013
  • Recently, there are growing interests on carbon emissions related in climate change which is worldwide emerging important issue. Some research works are now carrying out in order to reduce the carbon emission in pulp and paper industries by the synthesis of precipitated calcium carbonate using the exhaust carbon dioxide from combustion furnace or incinerator. However, for solving the original problems on carbon emission, we need to consider the analysis of basic methodology on $CO_2$ through the process efficiencies. There are two general tools for carbon emissions; one is the greenhouse gas inventory and the other is $LCCO_2$ method which is applied to particular items of raw materials and utilities in unit process. In this study, the carbon emissions in wood-containing printing paper production line were calculated by using $LCCO_2$ method. The general materials and utilities for paper production, such as fibrous materials, chemical additives, electric power, steam, and industrial water were analyzed. As the results, $Na_2SiO_3$ showed the highest loads in carbon emissions, and the total amount of carbon emissions was the highest in electricity. In the production line of printing paper using de-inked pulp and BTMP, as the mixing ratio of DIP was higher, the carbon emissions were decreased because of high use of electric power in TMP process.

The Latest Progress on the Development of Technologies for $CO_2$ Storage in Marine Geological Structure and its Application in Republic of Korea (해저 지질구조내 $CO_2$ 저장기술의 연구개발 동향 및 향후 국내 실용화 방안)

  • Kang, Seong-Gil;Huh, Cheol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.24-34
    • /
    • 2008
  • To mitigate the climate change and global warming, various technologies have been internationally proposed for reducing greenhouse gas emissions. Especially, in recent, carbon dioxide capture and storage (CCS) technology is regarded as one of the most promising emission reduction options that $CO_2$ be captured from major point sources (eg., power plant) and transported for storage into the marine geological structure such as deep sea saline aquifer. The purpose of this paper is to review the latest progress on the development of technologies for $CO_2$ storage in marine geological structure and its perspective in republic of Korea. To develop the technologies for $CO_2$ storage in marine geological structure, we carried out relevant R&D project, which cover the initial survey of potentially suitable marine geological structure fur $CO_2$ storage site and monitoring of the stored $CO_2$ behavior, basic design for $CO_2$ transport and storage process including onshore/offshore plant and assessment of potential environmental risk related to $CO_2$ storage in geological structure in republic of Korea. By using the results of the present researches, we can contribute to understanding not only how commercial scale (about 1 $MtCO_2$) deployment of $CO_2$ storage in the marine geological structure of East Sea, Korea, is realized but also how more reliable and safe CCS is achieved. The present study also suggests that it is possible to reduce environmental cost (about 2 trillion Won per year) with developed technology for $CO_2$ storage in marine geological structure until 2050.

  • PDF

Analysis of Greenhouse Gas Research Trends of Hydropower Dams: Focusing on Foreign Cases (수력발전댐에서 온실가스 연구 동향 분석 : 국외 사례를 중심으로)

  • Park, Kyoung-deok;Jo, Won Gi;So, Yoon Hwan;Kang, Dong-hwan
    • Journal of Environmental Science International
    • /
    • v.31 no.2
    • /
    • pp.195-213
    • /
    • 2022
  • This research summarizes the generating factors of greenhouse gas (carbon dioxide, methane, nitrous oxide) in hydropower dams and related domestic/foreign researches. Microorganisms and eutrophication are the main factors in greenhouse gases in hydropower dam reservoirs. The greenhouse gas emission from the hydropower dam is affected by meteorological factors and dam operation periods, and greenhouse gases are also emitted from the outlets. The fluxes of greenhouse gas emission from the hydropower dams were -926~180,806 mg CO2 m-2d-1, -0.19~3800 mg CH4 m-2d-1, and 0.01~16.1 mg N2O m-2d-1. In South Korea, the study on the greenhouse gas emission from Korean hydropower dams has been rarely, and therefore it is inquired. This research suggested the methods on the greenhouse gas emission from Korean hydropower dams and flux calculation.