• Title/Summary/Keyword: Carbon Conversion

Search Result 708, Processing Time 0.025 seconds

Conversion of $CO_2$ and $CH_4$ to Syngas by Making Use of Microwave Plasma Torch (전자파 플라즈마 토치를 이용한 이산화탄소와 메탄의 Syngas 합성)

  • Dong Hun, Shin;Yong Cheol, Hong;Han Sup, Uhm
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2004.11a
    • /
    • pp.195-200
    • /
    • 2004
  • Carbon dioxide ($CO_2$) and methane (CH$_4$) are two major greenhouse Bases. $CO_2$is a stack gas of many industrial processes and the main product of the hydrocarbon combustion. There is recent research interest on the synthesis gas (syngas) formation from $CO_2$ and CH$_4$, via the following reaction: CH$_4$+$CO_2$longrightarrow 2H$_2$+$CO_2$, in order to reduce the greenhouse effects and to synthesize various chemicals, Preliminary experiments were conducted on the conversion of $CO_2$ and CH$_4$ to syngas by making use of a microwave plasma torch at atmospheric pressure. Conversion rates of $CO_2$and CH$_4$ to hydrogen (H$_2$), carbon monoxide (CO) and higher hydrocarbons were investigated using Gas Chromatography (GC) and Fourier Transform Infrared (FTIR). The experimental data indicate that the main products were H$_2$, CO and small amount of higher hydrocarbons, such as ethylene (C$_2$H$_4$).

  • PDF

Development of Control Program for Methane-hydrogen Fuel Conversion Based on Oxygen Concentration in Exhaust Gas (배기가스 내 산소 농도 기반 메탄-수소 연료 전환 제어 프로그램 개발)

  • EUNJU SHIN;YOUNG BAE KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.1
    • /
    • pp.38-46
    • /
    • 2023
  • Carbon neutrality policies have been strengthened to reduce emissions, and the importance of technology road maps has been emphasized. In the global industrial boiler market, carbon neutrality is implemented through fuel diversification of methane-hydrogen mixture gas. However, various problems such as flashback and flame unstability arise. There is a limit to implementing the actual system as it remains in the early stage. Therefore, it is necessary to secure the source technology of methane-hydrogen hybrid combustion system applicable to industrial fields. In this study, control program for methane-hydrogen fuel conversion was developed to expect various parameters. After determining the hydrogen mixing ratio and the input air flow, the fuel conversion control algorithm was constructed to get the parameters that achieve the target oxygen concentration in the exhaust gas. LabVIEW program was used to derive correlations among hydrogen mixing rate, oxygen concentration in exhaust gas, input amount of air and heating value.

Study on Forestland Conversion Demand Prediction based on System Dynamics Model (System Dynamics 기반의 산지전용 수요 모델 개발에 관한 연구)

  • Doo-Ahn, KWAK
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.222-237
    • /
    • 2022
  • This study was performed to predict change of forestland area in future to 2050 based on System Dynamics Model which is based on feedback loop by causal relationship. As forestland area change in the future depends on potential forestland conversion demands, each demand type of forestland conversion such as agricultural, industrial, public and residential/commercial use was modeled using annual GDP, population, number of household, household construction permission area (1981~2019). In results, all of conversion demands would have continuously decreased to 2050 while residential and commercial land would be reduced from 2034. Due to such shortage, eventually, total of forestland in South Korea would have decreased to 6.18 million ha when compared to current 6.29 million ha. Moreover, the forestland conversion to other use types must be occurred continuously in future because most of forestland is owned privately in South Korea. Such steady decrement of forestland area in future can contribute to the shortage of carbon sink and encumber achievement of national carbon-neutral goal to 2050. If forestland conversion would be occurred inevitably in future according to such change trends of all types, improved laws and polices related to forestland should be prepared for planned use and rational conservation in terms of whole territory management. Therefore, it is needed to offer sufficient incentive, such as tax reduction and payment of ecosystem service on excellent forestland protection and maintenance, to private owners for minimizing forestland conversion. Moreover, active afforestation policy and practice have to be implemented on idle land for reaching national goal 'Carbon Neutral to 2050' in South Korea.

Hydrogen Conversion of Syngas by Using WGS Reaction in a Coal Gasifier (가스화기에서 WGS 반응을 통한 합성가스의 수소 전환)

  • Lee, See Hoon;Kim, Jung Nam;Eom, Won Hyun;Baek, Il Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.12-19
    • /
    • 2013
  • A gasification process with pre-combustion $CO_2$ capture process, which converts coal into environment-friendly synthetic gas, might be promising option for sustainable energy conversion. In the coal gasification for power generation, coal is converted into $H_2$, CO and $CO_2$. To reduce the cost of $CO_2$ capture and to maximize hydrogen production, the removal of CO and the additional production of hydrogen might be needed. In this study, a 2l/min water gas shift system for a coal gasifier has been studied. To control the concentration of major components such as $H_2$, CO, and $CO_2$, MFCs were used in experimental apparatus. The gas concentration in these experiments was equal with syngas concentration from dry coal gasifiers ($H_2$: 25-35, CO: 60-65, $CO_2$: 5-15 vol%). The operation conditions of the WGS system were $200-400^{\circ}C$, 1-10bar. Steam/Carbon ratios were between 2.0 and 5.0. The commercial catalysts were used in the high temperature shift reactor and the low temperature shift reactor. As steam/carbon ratio increased, the conversion (1-$CO_{out}/CO_{in}$) increased from 93% to 97% at the condition of CO: 65, $H_2$: 30, $CO_2$: 5%. However the conversion decreased with increasing of gas flow and temperature. The gas concentration from LTS was $H_2$: 54.7-60.0, $CO_2$: 38.8-44.9, CO: 0.3-1%.

Characterization of Crop Residue-Derived Biochars Produced by Field Scale Biomass Pyrolyzer

  • Jung, Won-K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Application of biochar to soils is proposed as a significant, long-term, sink for atmospheric carbon dioxide in terrestrial ecosystems. In addition to reducing emissions and increasing the sequestration of carbon, production of biochar and its application to soils will contribute improve soil quality and crop productivity. Objectives were i) to evaluate biochar productivity from crop residues using a low-cost field scale mobile pyrolyzer and ii) to evaluate characteristics of feedstocks and biochars from locally collected crop residues. Pyrolysis experiments were performed in a reactor operated at $400-500^{\circ}C$ for 3-4 hours using biomass samples of post-harvest residues of corn (Zea mays L.), cotton (Gossypium spp.), rice (Oryza sativa L.), sorghum (Sorghum bicolor L.) and wheat (Triticum aestivum L.). Feedstocks differed, but average conversion to biochar was 23%. Carbon content of biomass feedstock and biochar samples were 445 g $kg^{-1}$ and 597 g $kg^{-1}$, respectively. Total carbon content of biochar samples was 34% higher than its feedstock samples. Significant increases were found in P, K, Ca, Mg, and micro-nutrients contents between feedstock and biochar samples. Biochar from corn stems and rice hulls can sequester by 60% and 49% of the initial carbon input into biochar respectively when biochar is incorporated into the soils. Pyrolysis conversion of corn and rice residues sequestered significant amounts of carbon as biochar which has further environmental and production benefits when applied to soils. Field experiment with crop residue biochar will be investigated the stability of biochars to show long-term carbon sequestration and environmental influences to the cropping systems.

Effect of Y2O3 Additive Amount on Densification of Reaction Bonded Silicon Carbides Prepared by Si Melt Infiltration into All Carbon Preform (완전 탄소 프리폼으로부터 Si 용융 침투에 의해 제조한 반응 소결 탄화규소의 치밀화에 미치는 Y2O3 첨가량의 영향)

  • Cho, Kyeong-Sik;Jang, Min-Ho
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.301-311
    • /
    • 2021
  • The conversion of all carbon preforms to dense SiC by liquid infiltration can become a low-cost and reliable method to form SiC-Si composites of complex shape and high density. Reactive sintered silicon carbide (RBSC) is prepared by covering Si powder on top of 0.5-5.0 wt% Y2O3-added carbon preforms at 1,450 and 1,500℃ for 2 hours; samples are analyzed to determine densification. Reactive sintering from the Y2O3-free carbon preform causes Si to be pushed to one side and cracking defects occur. However, when prepared from the Y2O3-added carbon preform, an SiC-Si composite in which Si is homogeneously distributed in the SiC matrix without cracking can be produced. Using the Si + C = SiC reaction, 3C and 6H of SiC, crystalline Si, and Y2O3 phases are detected by XRD analysis without the appearance of graphite. As the content of Y2O3 in the carbon preform increases, the prepared RBSC accelerates the SiC conversion reaction, increasing the density and decreasing the pores, resulting in densification. The dense RBSC obtained by reaction sintering at 1,500 ℃ for 2 hours from a carbon preform with 2.0 wt% Y2O3 added has 0.20 % apparent porosity and 96.9 % relative density.

Reduction Characteristics of Mass Produced Particle for Chemical-Looping Combustor with Different Fuels (매체순환식 가스연소기용 대량생산입자의 연료별 환원반응특성)

  • Ryu, Ho-Jung;Kim, Kyung-Su;Lee, Seung-Yong;Park, Yeong-Seong;Park, Moon-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.348-358
    • /
    • 2008
  • Reduction reactivity and carbon deposition characteristics of mass produced oxygen carrier particle(OCN-650) have been investigated by using hydrogen, methane, syngas, and natural gas as fuels. For all fuels, the maximum conversion and oxygen transfer capacity increased as the temperature increase. The reduction rate and the oxygen transfer rate increased as the temperature increase for methane. However, those values showed maximum at 900$^{\circ}C$ for hydrogen, syngas, and natural gas. To explain consistently the change of maximum conversion, reduction rate, oxygen transfer capacity, oxygen transfer rate and degree of carbon deposition for different fuels, new parameters such as reactive carbon contents and require oxygen per input gas were adopted.

Mass Production of Pullulan with Optimized Concentrations of Carbon and Nitrogen Sources by Aureobasidium pullulans HP-2001 in a 100-L Bioreactor with the Inner Pressure

  • Seo, Hyung-Pil;Chung, Chung-Han;Kim, Sung-Koo;Richard A. Gross;David L. Kaplan;Lee, Jin-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.237-242
    • /
    • 2004
  • Cell growth and the production of pullulan by Aureobasidium pullulan HP-2001, the UV-induced mutant of A pullulans ATCC 42023, increased with increased concentration of glucose up to 15.0% (w/v). Maximal production of pullulan in the flask scale was 27.65 g/l, when concentrations of glucose and yeast extract were 15.0 and 0.25% (w/v), respectively. Maximal conversion rate of pullulan from glucose as the carbon source was 0.37, when those of glucose and yeast extract were 5.0 and 0.15% (w/v), respectively. On the basis of total amount of pullulan, the conversion rate of pullulan from glucose, and utilization rate of glucose to cell mass and pullulan by A. pullulans HP-2001, the optimal concentrations of glucose and yeast extract for the mass production of pullulan were determined to be 10.0 and 0.25% (w/v), respectively, at which concentrations the production of pullulan and its conversion rate were 27.14 g/l and 0.27, respectively. Maximal production of pullulan with optimized concentrations of carbon and nitrogen sources by A. pullulans HP-200l in a 7-1 bioreactor was 32.12 g/l for 72 h culture, and that in a 100-1 bioreactor with the inner pressure of $0.4 kgf/cm^2$ was 36.87 g/l. Increased inner pressure of a 100-1 bioreactor resulted in a higher concentration of dissolved oxygen in the medium, which might enhance the production of pullulan by A. pullulans HP-2001.

Conversion of Cellulose into Polyols over Noble Metal Catalysts Supported on Activated Carbon (활성탄에 담지된 귀금속 촉매를 이용한 셀룰로우스의 폴리올로의 전환)

  • You, Su-Jin;Kim, Saet-Byul;Kim, Yong-Tae;Park, Eun-Duck
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.19-25
    • /
    • 2010
  • In this work, the conversion of crystalline cellulose into polyols in the presence of hydrogen was examined over noble metal (Pt, Ru, Ir, Rh, and Pd) catalysts supported on activated carbon. For comparison, Pt/${\gamma}-Al_2O_3$ and Pt/H-mordenite were also investigated. Several techniques: $N_2$ physisorption, X-ray diffraction(XRD), inductively-coupled plasma-atomic emission spectroscopy (ICP-AES), temperature-programmed reduction with $H_2$ ($H_2$-TPR) and CO chemisorption were employed to characterize the catalysts. The cellulose conversion was not strongly dependent on the types of the catalyst used. Pt/AC showed the highest yields to polyols among activated carbon-supported noble metal catalysts, viz. Pt/AC, Ru/AC, Ir/AC, Rh/AC and Pd/AC.

CO$_2$ Conversion to Methane using Bio-hydrogen (바이오 수소를 이용한 이산화탄소의 메탄 전환 연구)

  • Lee, Jun-Cheol;Kim, Jae-Hyung;Choi, Kwang-Keun;Pak, Dae-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.933-938
    • /
    • 2008
  • In the present study, carbon dioxide was converted to methane, using bio-hydrogen. Here, the bio-hydrogen was produced from organic waste. The anaerobic microorganism was cultured using only carbon dioxide and hydrogen for duration of 3 months. Therefore methane was not produced with acetogenotrophs. During methane production, carbon dioxide and hydrogen are taken in different ratios; among which 1 : 5 ratio has shown the highest methane yield. Carbon dioxide and hydrogen were introduced into the reactor at the rate of 8 mL/min and 40 mL/min, respectively. In this case, 92% of carbon dioxide was reduced and 2.2 m$^3$/m$^3$ day amount of methane was produced. Thus, the process has been successful in conversion of carbon dioxide into methane by purging it into methane fermentation reactor with bio-hydrogen using batch process.