• Title/Summary/Keyword: Carbon Conversion

Search Result 712, Processing Time 0.022 seconds

Reinforced Ion-exchange Membranes for Enhancing Membrane Capacitive Deionization (막 축전식 탈염 공정의 성능 향상을 위한 강화 이온교환막)

  • Min-Kyu Shin;Hyeon-Bee Song;Moon-Sung Kang
    • Membrane Journal
    • /
    • v.33 no.5
    • /
    • pp.257-268
    • /
    • 2023
  • Membrane capacitive deionization (MCDI) is a variation of the conventional CDI process that can improve desalination efficiency by employing an ion-exchange membrane (IEM) together with a porous carbon electrode. The IEM is a key component that greatly affects the performance of MCDI. In this study, we attempted to derive the optimal fabricating factors for IEMs that can significantly improve the desalination efficiency of MCDI. For this purpose, pore-filled IEMs (PFIEMs) were then fabricated by filling the pores of the PE porous support film with monomers and carrying out in-situ photopolymerization. As a result of the experiment, the prepared PFIEMs showed excellent electrochemical properties that can be applied to various desalination and energy conversion processes. In addition, through the correlation analysis between MCDI performance and membrane characteristic parameters, it was found that controlling the degree of crosslinking of the membranes and maximizing permselectivity within a sufficiently low level of membrane electrical resistance are the most desirable membrane fabricating condition for improving MCDI performance.

Legal and Institutional Improvement Tasks for Utilizing Mydata in the Transportation Sector for NetZero (탄소중립을 위한 교통분야 마이데이터 활용의 법제도적 개선 과제)

  • Ji-Yeon Lee;Min-Ji Koh;Seung-Neo Son
    • Industry Promotion Research
    • /
    • v.9 no.1
    • /
    • pp.47-55
    • /
    • 2024
  • In the transportation sector, reducing total vehicle mileage and passenger vehicle traffic are proposed as strategies to achieve carbon neutrality. To achieve this, MaaS services must be actively promoted with the goal of revitalizing public transportation. In order to promote MaaS, individual movement data is required, such as the individual's means of movement, route, and conversion of the individual's means of use. However, in Korea, there are legal limitations in collecting and utilizing data on individual movements. As the right to request transmission of personal information was newly established in the revised Personal Information Protection Act in 2023, a law was established to collect and utilize data on individual movements. However, enforcement ordinance, detailed rules, instructions, guidelines must be prepared, and the standardization of data format and transmission system for collecting my data needs to take precedence.

A Review of Strategies to Improve the Stability of Carbon-supported PtNi Octahedral for Cathode Electrocatalysts in Polymer Electrolyte Membrane Fuel Cells

  • In Gyeom Kim;Sung Jong Yoo;Jin Young Kim;Hyun S. Park;So Young Lee;Bora Seo;Kwan-Young Lee;Jong Hyun Jang;Hee-Young Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.96-110
    • /
    • 2024
  • Polymer electrolyte membrane fuel cells (PEMFCs) are green energy conversion devices, for which commercial markets have been established, owing to their application in fuel cell vehicles (FCVs). Development of cathode electrocatalysts, replacing commercial Pt/C, plays a crucial role in factors such as cost reduction, high performance, and durability in FCVs. PtNi octahedral catalysts are promising for oxygen reduction reactions owing to their significantly higher mass activity (10-15 times) than that of Pt/C; however, their application in membrane electrode assemblies (MEAs) is challenged by their low stability. To overcome this durability issue, various approaches, such as third-metal doping, composition control, halide treatment, formation of a Pt layer, annealing treatment, and size control, have been explored and have shown promising improvements in stability in rotating disk electrode (RDE) testing. In this review, we aimed to compare the features of each strategy in terms of enhancing stability by introducing a stability improvement factor for a direct and reasonable comparison. The limitations of each strategy for enhancing stability of PtNi octahedral are also described. This review can serve as a valuable guide for the development of strategies to enhance the durability of octahedral PtNi.

Advancing the Frontier in Alkaline Promoter Performance Evaluation: Exploring Simplified Adoption Methods (알칼리 촉진제 성능 측정의 새로운 전환점: 도입 방식의 단순화를 통한 탐구)

  • Wonjoong Yoon;Jiyeon Lee;Jaehoon Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.62-67
    • /
    • 2024
  • In this study, an alkali metal Na was introduced into iron-based catalysts used in the carbon dioxide-based Fischer-Tropsch process by wet impregnation and physical mixing methods to compare their performance. The as-prepared catalysts were evaluated for reactivity at 3.5 MPa, 330 ℃, feed ratio of H2/CO2 = 3 with a space velocity of 4,000 mL h-1 gcat-1. Comparing the two catalysts, it was found that Na was uniformly distributed throughout the catalyst when wet-impregnated, but Na for physically mixed catalyst was relatively located on the surface of the catalyst. In addition, the wet-impregnated catalyst showed higher liquid hydrocarbon (C5+) yield and lower CO selectivity. In conclusion, the effect of Na distribution in the catalyst on the reaction was identified and can be controlled by the introduction method.

Optimization of Microbial Production of Ethanol form Carbon Monoxide (미생물을 이용한 일산화탄소로부터 에탄올 생산공정 최적화)

  • 강환구;이충렬
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.73-79
    • /
    • 2002
  • The method to optimize the microbial production of ethanol from CO using Clostridium ljungdahlii was developed. The kinetic parameter study on CO conversion with Clostridium ljungdahlii was carried out and maximum CO conversion rate of 37.14 mmol/L-hr-O.D. and $K_{m}$ / of 0.9516 atm were obtained. It was observed that method of two stage fermentation, which consists of cell growth stage and ethanol production stage, was effective to produce ethanol. When pH was shifted from 5.5 to 4.5 and ammonium solution was supplied to culture media as nitrogen source at ethanol production stage, the concentration of ethanol produced was increased 20 times higher than that without shift. Ethanol production from CO in a fermenter with Clostridium ljungdahlii was optimized and the concentration of ethanol produced was 45 g/L and maximun ethanol productivity was 0.75 g ethanol/L-hr.

Metabolism of $C^{14}-1-glucose$ and $C^{14}-6-glucose$ by the Ehrlich Ascites Turner Tissue (에르릿히 복수종양의 $C^{14}-1-$ 포도당 및 $C^{14}-6-$포도당 대사에 관한 연구)

  • Kwon, Chang-Rak
    • The Korean Journal of Physiology
    • /
    • v.1 no.1
    • /
    • pp.33-41
    • /
    • 1967
  • The metabolic patterns of C-1 and C-6-carbon atoms of glucose were observed in the tissue homogenates of the Ehrlich ascites tumor tissue which was incubated for 3 hours in the Dubnuff metabolic shaking incubator. $C^{14}-1-and\;C^{14}-6-glucose$ were used as tracers. The glucose media in which tissue homogenate was incubated was kept at a concentration of 200mg% glucose of carrier and appropriate amount of $C^{14}-1-or\;C^{14}-6-tracer$. At the end of 3 hour incubation, respiratory $CO_2$ samples trapped by alkaline which is placed in the tenter well of incubation flask were analyzed for the total $CO_2$ production rates and their radioactivities. The tissue homogenate samples after incubation were analyzed for their concentrations of glucose, lactate, pyruvate and glycogen and calculations were made on the glucose consumption rate, pyruvate and lactate accumulation rates. The following results were obtained. Data obtained in each group are as follows: 1. In the tissue homogenate, which was incubated with $C^{14}-1-glucose as a substrate, total $CO_2$ production rate averaged $19.0{\pm}5.0{\mu}M/hr/gm$ and the mean specific activity of respiratory $CO_2$ was $840{\pm}296\;cpm/mgC.$ Relative specific activity (RSA) which means the fraction of $CO_2$ derived from medium $C^{14}-1-glucose$ to total $CO_2$ production rate was calculated by ratio of SA of respiratory $CO_2$ and medium $C^{14}-1-glucose.$ RSA was $14.3{\pm}5.0%,$ Accordingly actual $CO_2$ production rate from medium $C^{14}-1-glucose$ showed a mean value of $2.79{\pm}1.35\;{\mu}m$ of which amount was equivalent to the mean value of total glucose consumption rate $(RGDco_2)$, namely, $5.1{\pm}1.3%.$ Lactate and pyruvate appearance rates averaged $7.13{\pm}1.26\;and\;0.21{\pm}0.02{\mu}M/hr/gm,$ respectively. Assuming that these 3 carbon compounds appeared in the medium were derived from glucose, calculations were made that relative glucose disappearance rate into lactate $(RGD_L)$ was $38.0{\pm}5.4%\;and\;RGD_P$ was $1.23{\pm}0.03%.$ Therefore, about 43.3% of the total glucose consumed were accounted for by conversion into the respiratory $CO_2$, lactate and pyruvate. 2. In the second group, which was incubated with $C^{14}-1-glucose$ as a substrate, glucose consumption rate, lactate and pyruvate appearance rates showed almost the same order as the values of the $C^{14}-1-glucose$ substrate group. However, RSA was remarkably decreased showing a mean value of $1.02{\pm}0.13%.$ This fact means that the C-6 carbon of glucose take the minor part in the oxidative metabolism of glucose. The glycogen level in both substrate tissue homogenate showed less than 0.3% of tissue weight. These low value suggested that there was an inhibition of carbohydrate synthesis in the Ehrlich ascites tumor tissue. 3. The catabolic pathway of glucose in the tumor tissue were analyzed on the basis of Bloom's principle from the values of RSA. It was found that in the tumor tissue more than 90% of $CO_2$ derived from glucose were oxidized via the alternate pathway other than principal EMP-TCA cycle such as hexose monophosphate pathway (HMP). From the data described above, it was assumed that in the Ehrlich tumor tissue anaerobic glycolysis proceeds normally although, the oxidation of products of anaerobic glycolysis via the TCA cycle is inhibited resulting in the accumulation of lactate and almost all of oxidative energy from glucose is released by oxidative pathway such as HMP.

  • PDF

Electrochemical Characteristics of Transition Metal Pyrophosphate as Negative Electrode Materials through Solid-state Reaction (고상법으로 합성된 리튬이온 이차전지용 음극물질로서 전이금속 피로인산화물의 전기화학적 특성)

  • Hong, Min Young;An, Sang-Jo;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.105-112
    • /
    • 2020
  • Transition metal oxide, which undergoes a conversion reaction in the negative electrode material for a lithium-ion batteries, has a high specific capacity, but still has several critical problems. In this study, manganese pyrophosphate (Mn2P2O7), nickel pyrophosphate (Ni2P2O7), and carbon composite materials with pyrophosphates as novel negative electrode materials instead of transition metal oxide, are synthesized through simple solid-state reaction. The initial reversible capacity of Mn2P2O7 and Ni2P2O7 are 333 and 340 mAh g-1, and when the composite materials are composed with carbon, the reversible capacity increases to 433 and 387 mAh g-1, respectively. The initial Coulombic efficiency is also improved by about 10%. The Mn2P2O7 and carbon composite material has the highest initial capacity and efficiency, and has the best cycle performance. Mn2P2O7 containing polyanion, has a lower specific capacity due to the large mass of polyanion compared to MnO (manganese oxide). However, since Mn2P2O7 shows a voltage curve with a slope, the charging (lithiation) voltage increases from 0.51 to 0.57 V (vs. Li/Li+), and the discharge (delithiation) voltage decreases from 1.15 to 1.01 V (vs. Li/Li+). Therefore, the voltage efficiency of the cell is improved because the voltage difference between charging and discharging is greatly reduced from 0.64 to 0.44 V, and the operating voltage of the full cell increases because the negative electrode potential is lowered during the discharging process.

Economic Feasibility of REDD Project for Preventing Deforestation in North Korea (북한 산림전용 방지수단으로서의 REDD 사업의 경제적 타당성 분석)

  • Jo, Jang Hwan;KOO, Ja Choon;Youn, Yeo Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.630-638
    • /
    • 2011
  • This study aims to verify the economic validity of the REDD project in North Korea by estimating the potential carbon credits and the cost of REDD project. The REDD potential credits of North Korea are estimated based on the international statistics of forest area and population from 1990 to 2010, and the cost of REDD project is estimated indirectly by annual land opportunity cost of agriculture assuming that South Korea will aid the food production per area in North Korea. When the 25% reduction scenario was applied to the annual deforestation rate in North Korea, the potential REDD credits were estimated to be $4,232million{\sim}5,290milliontCO_2eq.$ for 20 years. It would account for 28~35% of South Korea's national medium-term greenhouse gas reduction target. On the other hand, the break-even price of REDD project was calculated as the profit of agriculture in the land available by forest conversion in North Korea. It was estimated to be 19.19$/$tCO_2eq.$ when the non-permanence risk of forest conserved through a REDD contract is assumed to be 20%. This price is higher than the price of REDD carbon credit 5$/$tCO_2eq.$ dealt in the 2010 voluntary carbon market, leading to no economic feasibility. However, REDD project provides co-benefits besides climate mitigation. As previous studies indicate, the break-even price is lower than 20$/$tCO_2eq.$, which is the social marginal cost of greenhouse gas emissions by loss of forest. Therefore REDD in North Korea can be justified against the social benefits. The economic feasibility of REDD project in North Korea can be largely influenced by the risk percentage. Thus, North Korean REDD project needs a strong guarantee and involvement by the government and people of North Korea to assure the project's economic feasibility.

Current Status of Sericulture and Insect Industry to Respond to Human Survival Crisis (인류의 생존 위기 대응을 위한 양잠과 곤충 산업의 현황)

  • A-Young, Kim;Kee-Young, Kim;Hee Jung, Choi;Hyun Woo, Park;Young Ho, Koh
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.605-614
    • /
    • 2022
  • Two major problems currently threaten human survival on Earth: climate change and the rapid aging of the population in developed countries. Climate change is a result of the increase in greenhouse gas (GHG) concentrations in the atmosphere due to the increase in the use of fossil fuels owing to economic and transportation development. The rapid increase in the age of the population is a result of the rise in life expectancy due to the development of biomedical science and technology and the improvement of personal hygiene in developed countries. To avoid irreversible global climate change, it is necessary to quickly transition from the current fossil fuel-based economy to a zero-carbon renewable energy-based economy that does not emit GHGs. To achieve this goal, the dairy and livestock industry, which generates the most GHGs in the agricultural sector, must transition to using low-carbon emission production methods while simultaneously increasing consumers' preference for low-carbon diets. Although 77% of currently available arable land globally is used to produce livestock feed, only 37% and 18% of the proteins and calories that humans consume come from dairy and livestock farming and industry. Therefore, using edible insects as a protein source represents a good alternative, as it generates less GHG and reduces water consumption and breeding space while ensuring a higher feed conversion rate than that of livestock. Additionally, utilizing the functionality of medicinal insects, such as silkworms, which have been proven to have certain health enhancement effects, it is possible to develop functional foods that can prevent or delay the onset of currently incurable degenerative diseases that occur more frequently in the elderly. Insects are among the first animals to have appeared on Earth, and regardless of whether humans survive, they will continue to adapt, evolve, and thrive. Therefore, the use of various edible and medicinal insects, including silkworms, in industry will provide an important foundation for human survival and prosperity on Earth in the near future by resolving the current two major problems.

Mineralogical Analysis of Calcium Silicate Cement according to the Mixing Rate of Waste Concrete Powder (폐콘크리트 미분말 치환율에 따른 이산화탄소 반응경화 시멘트의 광물상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.181-191
    • /
    • 2024
  • In the realm of cement manufacturing, concerted efforts are underway to mitigate the emission of greenhouse gases. A significant portion, approximately 60%, of these emissions during the cement clinker sintering process is attributed to the decarbonation of limestone, which serves as a fundamental ingredient in cement production. Prompted by these environmental concerns, there is an active pursuit of alternative technologies and admixtures for cement that can substitute for limestone. Concurrently, initiatives are being explored to harness technology within the cement industry for the capture of carbon dioxide from industrial emissions, facilitating its conversion into carbonate minerals via chemical processes. Parallel to these technological advances, economic growth has precipitated a surge in construction activities, culminating in a steady escalation of construction waste, notably waste concrete. This study is anchored in the innovative production of calcium silicate cement clinkers, utilizing finely powdered waste concrete, followed by a thorough analysis of their mineral phases. Through X-ray diffraction(XRD) analysis, it was observed that increasing the substitution level of waste concrete powder and the molar ratio of SiO2 to (CaO+SiO2) leads to a decrease in Belite and γ-Belite, whereas minerals associated with carbonation, such as wollastonite and rankinite, exhibited an upsurge. Furthermore, the formation of gehlenite in cement clinkers, especially at higher substitution levels of waste concrete powder and the aforementioned molar ratio, is attributed to a synthetic reaction with Al2O3 present in the waste concrete powder. Analysis of free-CaO content revealed a decrement with increasing substitution rate of waste concrete powder and the molar ratio of SiO2/(CaO+SiO2). The outcomes of this study substantiate the viability of fabricating calcium silicate cement clinkers employing waste concrete powder.