• 제목/요약/키워드: Carbon Absorption

Search Result 823, Processing Time 0.028 seconds

Simulating Carbon Storage Dynamics of Trees on the Artificial Ground (시뮬레이션을 통한 인공지반 교목의 탄소저장량 변화)

  • You, Soo-Jin;Song, Ki-Hwan;Park, Samuel;Kim, Se-Young;Chon, Jin-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.2
    • /
    • pp.11-22
    • /
    • 2017
  • To successfully create a low-carbon landscape in order to become a low-carbon city, it is necessary to understand the dynamics of artificial greening's resources on a multi-scale. Additionally, the effects of carbon storage should be quantitatively evaluated. The purpose of this study is to simulate and evaluate the changes in carbon storages of artificial ground trees using system dynamics throughout a long-term period. The process consisted of analyzing the dynamics of the multi-scale carbon cycle by using a casual loop diagram as well as simulating carbon storage changes in the green roof of the Gangnam-gu office building in 2008, 2018, 2028, and 2038. Results of the study are as follows. First, the causal loop diagram representing the relationship between the carbon storage of the artificial ground trees and the urban carbon cycle demonstrates that the carbon storage of the trees possess mutual cross-scale dynamics. Second, the main variables for the simulation model collected 'Biomass,' 'Carbon storage,' 'Dead organic matter,' and 'Carbon absorption,'and validated a high coefficient of determination, the value being ($R^2$=0.725, p<0.05). Third, as a result of the simulation model, we found that the variation in ranking of tree species was changing over time. This study also suggested the specific species of tree-such as Acer palmatum var. amoenum, Pinus densiflora, and Betula platyphylla-are used to improve the carbon storage in the green roof of the Gangnam-gu office building. This study can help contribute to developing quantitative and scientific criteria when designing, managing, and developing programs on low-carbon landscapes.

Comparative Analysis of Blue Carbon Stock Spatial Data in the Estuaries and Coastal Areas of the Geum and Nakdong Rivers (금강 및 낙동강 하구·연안의 블루카본 저장량 공간정보 비교)

  • Ji-Ae Jung;Bong-Oh Kwon;Hyun-Jung Hong;Jong-Ho Ahn;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1505-1515
    • /
    • 2023
  • As extreme weather events caused by climate change are occurring around the world, blue carbon has recently been gaining attention as a carbon sink. Blue carbon has been officially recognized by the Intergovernmental Panel on Climate Change (IPCC) as a means of reducing greenhouse gases, and various studies are underway to discover new blue carbon sources both domestically and internationally. Domestic blue carbon research is centered on carbon absorption and storage in tidal flats, which account for most of the coastal wetlands, but there is a lack of research on spatial information. This study utilized the carbon storage of tidal flats from previous studies and converted it into location and spatial information for each basin of the Geumgang and Nakdong rivers. In addition, a proxy value of carbon storage per area by basin was calculated to compare and analyze the total carbon storage of various tidal flats in Korea and abroad. As a result of the analysis, both the Geumgang and Nakdong River basins showed different amounts of carbon storage depending on the tidal flats data, with the highest amount in the Geumgang basin coming from the National Ocean Survey (469,810.1 Mg C) and the highest amount in the Nakdong River basin coming from the Ministry of Environment (217,145.01 Mg C). The results of this study can be used as a basis for future research on the establishment of domestic blue carbon spatial information.

Calibration of δ13C values of CO2 gas with different concentrations in the analysis with Laser Absorption Spectrometry (레이저흡광분석기(Laser Absorption Spectrometry)를 이용한 CO2가스의 탄소안정동위원소비 보정식 산출)

  • Jeong, Taeyang;Woo, Nam C.;Shin, Woo-Jin;Bong, Yeon-Sik;Choi, Seunghyun;Kim, Youn-Tae
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.537-544
    • /
    • 2017
  • Stable carbon isotope ratio of carbon dioxide (${\delta}^{13}C_{CO2}$) is used as an important indicator in the researches for global climate change and carbon capture and sequestration technology. The ${\delta}^{13}C$ value has been usually analyzed with Isotope Ratio Mass Spectrometer (IRMS). Recently, the use of Laser Absorption Spectrometry (LAS) is increasing because of the cost efficiency and field applicability. The purpose of this study was to suggest practical procedures to prepare laboratory reference gases for ${\delta}^{13}C_{CO2}$ analysis using LAS. $CO_2$ gas was adjusted to have the concentrations within the analytical range. Then, the concentration of $CO_2$ was assessed in a lab approved by the Korea Laboratory Accreditation Scheme and the ${\delta}^{13}C_{CO2}$ value was measured by IRMS. When the instrument ran over 12 hours, the ${\delta}^{13}C$ values were drifted up to ${\pm}10$‰ if the concentration of $CO_2$ was shifted up to 1.0% of relative standard deviation. Therefore, periodical investigation of analytical suitability and correction should be conducted. Because ${\delta}^{13}C_{CO2}$ showed the dependency on $CO_2$ concentration, we suggested the equation for calibrating the concentration effect. After calibration, ${\delta}^{13}C_{CO2}$ was well matched with the result of IRMS within ${\pm}0.52$‰.

Mesoporous Carbon Additives for Long Cycle Life Sulfur Cathodes of Li-S Batteries

  • Koh, Jeong Yoon;Kim, Tae Jeong;Park, Min-Sik;Kim, Eun Hee;Kim, Seok;Kim, Ki Jae;Yu, Ji-Sang;Kim, Young-Jun;Jung, Yongju
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3331-3335
    • /
    • 2014
  • We examine the potential use of disordered mesoporous carbon as a functional additive for confining dissolved Li-polysulfides and improving the cycling performance of Li-S batteries. To promote a better understanding of the correlation between the total pore volume of disordered mesoporous carbon and the cycling performance of Li-S batteries, a series of disordered mesoporous carbons with different total pore volumes are successfully synthesized using a commercial silica template. Based on the electrochemical and structural analyses, we suggest that the total pore volume of disordered mesoporous carbon is a predominant factor in determining its capability for either the absorption or adsorption of Li-polysulfides, which is primarily responsible for enhancing the cycling performance. The addition of disordered mesoporous carbon is also effective in enhancing the homogeneous distribution of active sulfur in the cathode, thereby affecting the cycling performance.

The Operational Characteristics of CO2 5 ton/day Absorptive Separation Pilot Plant (이산화탄소 5 ton/day 흡수분리 Pilot Plant 운전 특성)

  • O, Min-Gyu;Park, So-Jin;Han, Keun-Hee;Lee, Jong-Seop;Min, Byoung-Moo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.128-134
    • /
    • 2012
  • The pilot scale experiments can handle the flue gas up to 1,000 $Nm^3/hr$ for separation of carbon dioxide included in real flue gas at coal-fired power plant. The operational characteristics was analyzed with the main experimental variables such as flue gas flow rate, absorbent circulation rate using chemical absorbents mono-ethanolamine( MEA) and 2-amino-2-methyl-1-propanol(AMP). The more flue gas flow rate decreased in 100 $m^3/hr$ in the MEA 20 wt% experiments, the more carbon dioxide removal efficiency was increased 6.7% on average. Carbon dioxide removal efficiency was increased approximately 2.8% according to raise of the 1,000 kg/hr absorbent circulation rate. It also was more than 90% at $110^{\circ}C$ of re-boiler temperature. Carbon dioxide removal efficiency of the MEA was higher than that of the AMP. In the MEA(20 wt%) experiment, carbon dioxide removal efficiency(85.5%) was 10% higher than result(75.5%) of ASPEN plus simulation.

Properties of Cement Matrix using Carbon Black (카본블랙을 혼입한 시멘트 경화체의 특성)

  • Lee, Jeon-Ho;Lee, Chang-Woo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.217-218
    • /
    • 2021
  • With the prolonged Covid-19 epidemic, movement restrictions such as social distancing are prolonged, and as people stay indoors for a longer time, interest in indoor air pollution is increasing. Indoor air quality is not easily purified unlike outdoors. Among indoor building materials, paints and flooring contain formaldehyde that causes sick house syndrome and VOCs that contain carcinogenicity and harmfulness. For modern people who spend a lot of time living indoors for more than an hour, the occurrence of these harmful substances can be said to be fatal. In response to these risks, in July 2019, the government reinforced the standards for indoor air quality to protect the public's health by raising the detection standards for fine dust, ultrafine dust, and formaldehyde in indoor multi-use facilities. People use machines such as air purifiers to improve indoor air quality, or make efforts such as periodic ventilation. In order to reduce or support these other ancillary efforts more effectively, to reduce the generation of pollutants in the building itself, or to adsorb or purify pollutants in the air, use carbon black as an admixture to make a cement hardened body, and to grasp basic physical properties and adsorption capacity. And the result is as follows. As a result of the experiment to determine the appropriate amount of carbon black, it was confirmed that the more the amount of carbon black was added, the better it was in the formaldehyde emission test, but the tendency was not clear when measuring the flexural strength, so a further experiment to improve this is needed.

  • PDF

The mechanism of black core formation (블랙코어 형성 메커니즘)

  • Park Jiyun;Kim Yootaek;Lee Ki-Gang;Kang Seunggu;Kim Jung-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.208-215
    • /
    • 2005
  • The 10mm diameter aggregates made of clay, carbon and $Fe_2O_3$ were prepared to investigate the mechanism of black core formation. The specific gravity, absorption rate, percent of black core area, fracture strength, total Fe analysis, and XRF were measured at various compositions, sintering temperatures, sintering times, sintering atmospheres, and sintering methods. Small addition of $Fe_2O_3$ did not affect physical properties of the aggregates; however, the percent of black core area increased with increasing carbon contents and increasing sintering temperature. Specific gravity of the aggregates decreased and the water absorption ratio increased with increasing percent of black core area. The aggregates sintered at oxidation atmosphere showed clear border between shell and black core area. Hence, the aggregates sintered at reduction atmosphere showed only black core area in the cross-section of the aggregates. The specific gravity of the aggregates sintered at reduction atmosphere increased with increasing carbon contents and that was the lowest of all comparing other aggregates sintered at different atmospheres. Adsorption rate increased with increasing carbon contents at all atmospheres. The fast sintered aggregates showed lower specific gravity, higher absorption rate, and more black core area than the normally sintered aggregates. It was turned out that the aggregates having more black core area showed higher fracture strength than that of aggregates with no black core area. From the total Fe analysis, the concentration of Fe and FeO was higher at black core area than at shell. Because the concentration of $Fe_2O_3$ in the shell was higher than other area, the color of the shell appeared red. It was also turned out from the XRF analysis that carbon was exist only at black core area.

Organic carbon distribution and cycling in the Quercus glauca forest at Gotjawal wetland, Jeju Island, Korea

  • Han, Young-Sub;Lee, Eung-Pill;Park, Jae-Hoon;Lee, Seung-Yeon;Lee, Soo-In;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.60-69
    • /
    • 2018
  • Background: This study was conducted from March 2011 to February 2013 in order to evaluate the ecosystem value by examining the organic carbon distribution and cycling in the Quercus glauca forest, evergreen oak community at Seonheul-Gotjawal, Jeju Island. Results: The amount of organic carbon distribution was $124.5ton\;C\;ha^{-1}$ in 2011 and $132.63ton\;C\;ha^{-1}$ in 2012 for aboveground biomass. And it was $31.13ton\;C\;ha^{-1}$ in 2011 and $33.16ton\;C\;ha^{-1}$ in 2012 for belowground biomass. In total, the amount of organic carbon distribution in plants was 155.63 and $165.79ton\;C\;ha^{-1}$ in 2011 and 2012, respectively. In 2011 and 2012 respectively, the amount of organic carbon distribution was 3.61 and $6.39ton\;C\;ha^{-1}$ in the forest floor and it was 78.89 and $100.71ton\;C\;ha^{-1}$ in the soil. As shown, most carbon was distributed in plants. Overall, the amount of organic carbon distribution of the Q. glauca forest was $238.13ton\;C\;ha^{-1}$ in 2011 and $272.89ton\;C\;ha^{-1}$ in 2012. In 2011, the amount of organic carbon fixed in plants through photosynthesis (NPP) was $14.22ton\;C\;ha^{-1}\;year^{-1}$ and the amount of carbon emission of soil respiration was $16.77ton\;C\;ha^{-1}\;year^{-1}$. The net ecosystem production (NEP) absorbed by the Q. glauca forest from the atmosphere was $5ton\;C\;ha^{-1}\;year^{-1}$. Conclusions: The carbon storage value based on such organic carbon distribution was estimated about $23.81mil\;won\;ha^{-1}$ in 2011 and $27.29mil\;won\;ha^{-1}$ in 2012, showing an annual increment of carbon storage value by $3.48mil\;won\;ha^{-1}$. The carbon absorption value based on such NEP was estimated about $500,000won\;ha^{-1}\;year^{-1}$.

Study on the Utilization of Barite in Making Carbon Film Ceramic Resistor (탄소피막 저항기용 자기소체 제조에 있어 Barite 활용에 관한 연구)

  • 박정현;전병세;배원태
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.2
    • /
    • pp.95-100
    • /
    • 1982
  • Instead of barium carbonate, domestic barite was used as the flux in manufacturing theinsulating porcelain. To avoid the problems arising from the decomposition of barite in the body during firing, BaO.$Al_2O_3$ was synthesized at $1300^{\circ}C$ for 5 hours. synthetic BaO.$Al_2O_3$ was mixed with other materials such as kaoline, alumina, clay, dolomite. The RO content (CaO. MgO. BaO) of the batches was varied from range of 4 to 14wt. % at 2wt. % - intervals, and firing temperature was varied from 1280 to 140$0^{\circ}C$-at 4$0^{\circ}C$ intervals The properties such as water absorption, bulk density. mechnical strength, specific resistance, and linear shrinkage were measured. The body containing 12 wt.% of RO content showed the satisfactory for the application in the Fixed Carbon Film Resistor.

  • PDF

Microplate Assay Measurement of Cytochrome P450-Carbon Monoxide Complexes

  • Choi, Suk-Jung;Kim, Mi-Ra;Kim, Sung-Il;Jeon, Joong-Kyun
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.332-335
    • /
    • 2003
  • Cytochrome P450 in microsomes can be quantitated using the characteristic 450 nm absorption peak of the CO adduct of reduced cytochrome P450. We developed a simple microplate assay method that is superior to previous methods. Our method is less laborious, suitable for analyzing many samples, and less sensitive to sample aggregation. Microsome samples in microplate wells were incubated in a CO chamber rather than bubbled with CO gas, and then reduced with sodium hydrosulfite solution. This modification allowed a reliable and reproducible assay by effectively eliminating variations between estimations.