• Title/Summary/Keyword: Carbon/phenolic Composites

Search Result 75, Processing Time 0.026 seconds

Plasma Treatment of Carbon Nanotubes and Interfacial Evaluation of CNT-Phenolic Composites by Acoustic Emission and Dual Matrix Techniques (음향 방출과 이중 기지 기술을 이용한 탄소나노튜브의 플라즈마 처리 효과에 따른 탄소나노튜브-페놀 복합재료의 계면특성 평가)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Lee, Woo-Il;Park, Jong-Kyoo;Park, Joung-Man
    • Composites Research
    • /
    • v.25 no.3
    • /
    • pp.76-81
    • /
    • 2012
  • Atmospheric pressure plasma treatment on carbon nanotube (CNT) surfaces was performed to modify reinforcement effect and interfacial adhesion of carbon fiber reinforced CNT-phenolic composites. The surface changes occurring on CNT treated with plasma were analyzed by using Fourier transform infrared spectroscope (FT-IR). The significant improvement of wettability on CNT was confirmed by static contact angle test after plasma treatment. Such plasma treatment resulted in a decrease in the advancing contact angle from $118^{\circ}$ to $60^{\circ}$. The interfacial adhesion between carbon fiber and CNT-phenolic composites increased by plasma treatment based on apparent modulus test results during quasi-static tensile strength. Furthermore, the proposed database offers valuable knowledge for evaluating interfacial shear strength (IFSS).

Study on the ablation structures of Carbon/Phenolic composites used PAN based carbon fiber (PAN계 탄소섬유를 이용한 Carbon/Phenolic 복합재의 삭마구조 특성 연구)

  • Im, Yeon-Su;Kim, Dong-Gyu;Park, In-Seo;Yun, Byeong-Il
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.339-348
    • /
    • 1994
  • The study has been conducted to know ablation microstructures and characteristics in carbon /phenolic composites. Ablation properties depend on mole fraction of $H_2O$ and $C0_2$ gas which were produced by reaction between propellant and oxidizer. However, the results of this study shown that the ablation also depended on weaving structure, density of fabric, and tow size of carbon fiber. 3K 8HS fabric showed superior ablation resistance to others, 3K twill and 12K 8HS fabric structures.

  • PDF

Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material (CNT를 첨가한 Silicon/Carbon 음극소재의 전기화학적 특성)

  • Jung, Min zy;Park, Ji Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.16-21
    • /
    • 2016
  • Silicon/Carbon/CNT composites as anode materials for lithium-ion batteries were synthesized to overcome the large volume change during lithium alloying-de alloying process and low electrical conductivity. Silicon/Carbon/CNT composites were prepared by the fabrication processes including the synthesis of SBA-15, magnesiothermic reduction of SBA-15 to obtain Si/MgO by ball milling, carbonization of phenolic resin with CNT and HCl etching. The prepared Silicon/Carbon/CNT composites were analysed by XRD, SEM, BET and EDS. In this study, the electrochemical effect of CNT content to improve the capacity and cycle performance was investigated by charge/discharge, cycle, cyclic voltammetry and impedance tests. The coin cell using Silicon/Carbon/CNT composite (Si:CNT=93:7 in weight) in the electrolyte of $LiPF_6$ dissolved in organic solvents (EC:DMC:EMC=1:1:1 vol%) has better capacity (1718 mAh/g) than those of other composition coin cells. The cycle performance of coin cell was improved as CNT content was increased. It is found that the coin cell (Si:CNT=89:11 in weight) has best capacity retension (83%) after 2nd cycle.

Behaviors of Mechanical Properties of Filament-Winding-Laminated Composites due to Environmental Aging (필라멘트 와인딩 복합재의 환경노화에 따른 기계적물성 평가)

  • Choi Nak-Sam;Yun Young-Ju;Lee Sang-Woo;Kim Duck-Jae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.31-35
    • /
    • 2006
  • Degradation characteristics of filament-winded composites due to accelerated environmental aging have been evaluated under high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP did high reduction by 25% under the influence of high temperature and water while CFRP showed little degradation. However for water-immersed $90^{\circ}$ composites both CFRP and GFRP showed high reduction in tensile strength. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites.

  • PDF

Thermomechanical Coupled Analysis of Carbon/phenolic Composite Structures in Reentry Environments (재진입 환경의 탄소/페놀릭 복합재 구조물의 열기계적 연계 해석)

  • Son, Myeong Jin;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.414-421
    • /
    • 2019
  • In this paper, thermomechanical coupled analysis of carbon/phenolic composites structures in reentry environment was performed. The interface of thermomechanical coupled analysis was constructed using commercial software. The governing equations of temperature and displacement fields were considered to simulate change of physical behavior due to pyrolysis and ablation effects. The results of thermomechanical coupled analysis were compared with the results of ablation test using arc-heated wind tunnel. Also, the structural stability of reentry capsule was analyzed using the analysis interface. The excellent ablation characteristics and thermal protection effects of the carbon/phenolic composites were confirmed and the constructed analysis interface can be effectively used to perform thermal protection system design.

Effect of HTT on Bending and Tensile Properties of 2D C/C Composites

  • Dhakate, S.R.;Aoki, T.;Ogasawara, T.
    • Carbon letters
    • /
    • v.6 no.4
    • /
    • pp.234-242
    • /
    • 2005
  • Bending and tensile properties of 2D cross-ply C/C composites with processing heat treatment temperature (HTT) are evaluated. C/C composites used are made from two types of PAN based T700 and M40 carbon fibers with phenolic resin as carbon matrix precursor. Both the types of composites are heat treated at different temperatures (ranging from 750 to $2800^{\circ}C$) and characterized for bending and tensile properties. It is observed that, real density and open porosity increases with HTT, however, bulk density does show remarkable change. The real density and open porosity are higher in case T-700 carbon fiber composites at $2800^{\circ}C$, even though the density of M40 carbon fiber is higher. Bending strength is considerably greater than tensile strength through out the processing HTT due to the different mode of fracture. The bending and tensile strength decreases in both composites on $1000^{\circ}C$ which attributed to decrease in bulk density, thereafter with increase in HTT, bending and tensile strength increases. The maximum strength is in T700 fiber based composites at HTT $1500^{\circ}C$ and in M40 fiber based composites at HTT $2500^{\circ}C$. After attending the maximum value of strength in both types of composite at deflection HTT, after that strength decreases continuously. Decrease in strength is due to the degradation of fiber properties and in-situ fiber damages in the composite. The maximum carbon fiber strength realization in C/C composites is possible at a temperature that is same of fiber HTT. It has been found first time that the bending strength more or less 1.55 times higher in T700 fiber composites and in M40 fiber composites bending strength is 1.2 times higher than that of tensile strength of C/C composites.

  • PDF

Formation of a Carbon Interphase Layer on SiC Fibers Using Electrophoretic Deposition and Infiltration Methods

  • Fitriani, Pipit;Sharma, Amit Siddharth;Lee, Sungho;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.284-289
    • /
    • 2015
  • This study examined carbon layer coating on silicon carbide (SiC) fibers by utilizing solid-state and wet chemistry routes to confer toughness to the fiber-reinforced ceramic matrix composites, as an alternative to the conventional pyrolytic carbon (PyC) interphase layer. Electrophoretic deposition (EPD) of carbon black nanoparticles using both AC and DC current sources, and the vacuum infiltration of phenolic resin followed by pyrolysis were tested. Because of the use of a liquid phase, the vacuum infiltration resulted in more uniform and denser carbon coating than the EPD routes with solid carbon black particles. Thereafter, vacuum infiltration with controlled variation in phenolic resin concentration, as well as the iterations of infiltration steps, was improvised to produce a homogeneous carbon coating having a thickness of several hundred nanometers on the SiC fiber. Conclusively, it was demonstrated that the carbon coating on the SiC fiber could be achieved using a simpler method than the conventional chemical vapor deposition technique.

실험계획법을 이용한 탄소섬유/페놀수지의 강화 cycle연구

  • Ha, Heon-Seung;Lee, Jin-Yong;Jo, Dong-Hwan;Yun, Byeong-Il
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.514-520
    • /
    • 1993
  • In this paper the cure cycle of carbon fiber/phenolic resin was investigated by the Taguchi Method in an experimental design. Experiments were systematically performed using $L_{18}(2^1 \times 3_7)$ orthorgonal array table of the experimental design. In the experimental design, eight compression molding parameters (heating rate, pressing temperature, pressing rate, molding pressure, curing temperature, dwell time at curing temperature, cooling rate and degassing) were considered and the effects of the parameters on the flexural strength and the apparent porosity of carbon fiber/phenolic composites were investigated. The analysis of variance for the experimental results indicated that molding pressure and curing temperature are the most significant parmeters in the flexural strength and the apparent porosity of carbon fiber/phenolic resin composites, respectively.

  • PDF

Test Method on Interlaminar Tensile Properties of Carbon Fabric Reinforced Phenolic Composites (카본-페놀 직물복합재료의 층간인장물성 측정기법)

  • Lee Ji-Hyung;Kim Hyoung-Geun;Lee Hyung-Sik;Park Young-Che;Ju Se-Kyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.81-85
    • /
    • 2006
  • Through-the-thickness properties of thick-walled cylindrical composites are required to determine structural performances because interlaminar tensile stress is primarily responsible for structural failure of the composites during their curing process. It is necessary for evaluating the tensile properties to find individual test methods to find appropriate methods because there are no recognised international standards(test methods and test specifications) available for generating reliable tensile properties in the direction. This paper has performed an experimental Study to measure that properties of carbon fabric/phenolic composites are produced by domestic company. Several test methods using an aluminum specimen were compared and evaluated. The best method, found out, was adopted to measure transverse through-the-thickness properties of composite materials. The results show that strain trends on four faces of composite specimen are the same.

  • PDF

Test Method on Interlaminar Tensile Properties of Carbon fabric Reinforced Phenolic Composites (카본-페놀 직물복합재료의 층간인장물성 측정기법)

  • Lee, Ji-Hyung;Kim, Hyoung-Geun;Lee, Hyung-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.48-52
    • /
    • 2006
  • Through-the-thickness properties of thick-walled cylindrical composites are required to determine structural performances because interlaminar tensile stress is primarily responsible for structural failure of the composites during their curing process. It is necessary for evaluating the tensile properties to find individual test methods to find appropriate methods because there are no recognised international standards(test methods and test specifications) available for generating reliable tensile properties in the direction. This paper has performed an experimental study to measure that properties of carbon fabric/phenolic composites which are produced by domestic company. Several test methods using an aluminum specimen were compared and evaluated. The best test method to measure transverse through-the-thickness properties of composite materials was developed by the experimental results that strain trends on all faces of composite specimen are the same.