• Title/Summary/Keyword: Carbide fuel

Search Result 70, Processing Time 0.024 seconds

Spherical UO2 Kernel and TRISO Coated Particle Fabrication by GSP Method and CVD Technique (겔침전과 화학증착법에 의한 구형 UO2 입자와 TRISO 피복입자 제조)

  • Jeong, Kyung-Chai;Kim, Yeon-Ku;Oh, Seung-Chul;Cho, Moon-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.590-597
    • /
    • 2010
  • HTGR using a TRISO coated particles as nuclear raw fuel material can be used to produce clean hydrogen gas and process heat for a next-generation energy source. For these purposes, a TRISO coated particle was prepared with 3 pyro-carbon (buffer, IPyC, and OPyC) layers and 1 silicone carbide (SiC) layer using a CVD technique on a spherical $UO_2$ kernel surface as a fissile material. In this study, a spherical $UO_2$ particle was prepared using a modified sol-gel method with a vibrating nozzle system, and TRISO coating fabrication was carried out using a fluidized bed reactor with coating gases, such as acetylene, propylene, and methyltrichlorosilane (MTS). As the results of this study, a spherical $UO_2$ kernel with a sphericity of 1+0.06 was obtained, and the main process parameters in the $UO_2$ kernel preparation were the well-formed nature of the spherical ADU liquid droplets and the suitable temperature control in the thermal treatment of intermediate compounds in the ADU, $UO_3$, and $UO_2$ conversions. Also, the important parameters for the TRISO coating procedure were the coating temperature and feed rate of the feeding gas in the PyC layer coating, the coating temperature, and the volume fraction of the reactant and inert gases in the SiC deposition.

A Review of SiCf/SiC Composite to Improve Accident-Tolerance of Light Water Nuclear Reactors (원자력 사고 안전성 향상을 위한 SiCf/SiC 복합소재 개발 동향)

  • Kim, Daejong;Lee, Jisu;Chun, Young Bum;Lee, Hyeon-Geun;Park, Ji Yeon;Kim, Weon-Ju
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.161-174
    • /
    • 2022
  • SiC fiber-reinforced SiC matrix composite is a promising accident-tolerant fuel cladding material to improve the safety of light water nuclear reactors. Compared to the current zirconium alloy fuel cladding as well as metallic accident-tolerant fuel cladding, SiC composite fuel cladding has exceptional accident-tolerance such as excellent structural integrity and extremely low corrosion rate during severe accident of light water nuclear reactors, which reduces reactor core temperature and delays core degradation processes. In this paper, we introduce the concept, technical issues, and properties of SiC composite accident-tolerant fuel cladding during operation and accident scenarios of light water nuclear reactors.

Effect of Deposition Temperature on the Property of Pyrolytic SiC Fabricated by the FBCVD Method (유동층 화학기상증착법을 이용하여 제조된 열분해 탄화규소의 특성에 미치는 증착온도의 영향)

  • Kim, Yeon-Ku;Kim, Weon-Ju;Yeo, SungHwan;Cho, Moon-Sung
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.434-440
    • /
    • 2014
  • Silicon carbide(SiC) layer is particularly important tri-isotropic (TRISO) coating layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO coated particle. The high temperature deposition of SiC layer normally performed at $1500-1650^{\circ}C$ has a negative effect on the property of IPyC layer by increasing its anisotropy. To investigate the feasibility of lower temperature SiC deposition, the influence of deposition temperature on the property of SiC layer are examined in this study. While the SiC layer coated at $1500^{\circ}C$ obtains nearly stoichiometric composition, the composition of the SiC layer coated at $1300-1400^{\circ}C$ shows discrepancy from stoichiometric ratio(1:1). $3-7{\mu}m$ grain size of SiC layer coated at $1500^{\circ}C$ is decreased to sub-micrometer (< $1{\mu}m$) $-2{\mu}m$ grain size when coated at $1400^{\circ}C$, and further decreased to nano grain size when coated at $1300-1350^{\circ}C$. Moreover, the high density of SiC layer (${\geq}3.19g/cm^3$) which is easily obtained at $1500^{\circ}C$ coating is difficult to achieve at lower temperature owing to nano size pores. the density is remarkably decreased with decreasing SiC deposition temperature.

Remote NDT for Inspection of Reactor Vessel Components of fast Breeder Test Reactor

  • Anandapadmanaban, B.;Srinivasan, G.;Kapoor, R.P.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.520-525
    • /
    • 2003
  • Fast Breeder Test Reactor (FBTR) is a 40MW (thermal) / 13.2MW (electrical), Plutonium - Uranium mixed carbide fuelled, sodium cooled, loop type nuclear reactor operating at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam. Its main aim is to generate experience in operation of fast reactors and sodium systems and to serve as an irradiation facility for development of fuels and structural materials fur fast reactors. Nuclear reactors pose difficulties to the NDT techniques used to monitor the conditions of the internal components. Sodium cooled fast breeder reactors have their own typical difficulties in using the NDT techniques. These are due to the need for operation in aggressive environment of nuclear radiation and sodium (molten/vapour), as well as the need to maintain leak tightness of a very high order during all states of reactor operation and shutdown for fuel handling, maintenance and remote inspection. This paper discusses the following NDT techniques, which have been successfully used for the past 15 years in FBTR: (i) Periscope and Projector, (ii) Core Co-ordinate Measuring Device and, (iii) Optical fiberscope. The inspection using these techniques have given confidence for further reactor operation at high power by giving useful data on the conditions of the components inside the reactor vessel.

Boron-Containing Solid Fuel Combustion and Cycle Analysis (보론을 포함한 고체 연료 연소와 사이클 해석)

  • Lee, Tae Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.18-24
    • /
    • 2015
  • An experimental investigation was conducted to figure out the effects of the inlet air temperature on the combustion efficiency using the fuel grains which were highly loaded with boron carbide. The results showed that the normalized combustion efficiency increased with the inlet air temperature, apparently the result of enhanced combustion of the boron particles. Even though the combustion efficiency is increased, the overall efficiency through the semi-empirical method, is decreased with the increasing inlet air temperature. Brayton cycle analysis has been performed using the heat input parameter and combustor Mach number, those two parameters are important role for the performance and similar trends are shown at the experimental results.

Microstructural Characteristics of Thermally Sprayed WC-Co Coatings (Thermally Sprayed WC-Co 코팅층의 미세조직 및 특성)

  • Kang, Hee-Soo;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.56-62
    • /
    • 2009
  • The degree of WC decomposition and hardness of thermally sprayed WC-Co coatings are important factors determining the wear resistance of the coatings. In order to minimize the degree of decomposition and to increase hardness, the effects of processing parameters of high velocity oxyfuel(HVOF) spraying on various characteristics of nanostructured WC-12Co coating have been evaluated by an experimental design method. The HVOF sprayed WC-12Co coatings consisted of various carbide phases including WC, $W_2C$ and $W_3Co_3C$, with a much reduced carbon content. The degree of WC decomposition and decarburization was affected by changing barrel length and spray distance. The hardness of WC-Co coatings was strongly related to droplet temperature at substrate, and increased with increasing fuel addition and/or decreasing spray distance. The effective control of processing parameters was discussed in detail for manufacturing a high performance WC-Co coating.

A Study on a Fabrication of simulated Fuels for a design of a High-Capacity Vol-oxidizer (대용량 사용후핵연료 공기산화로 설계를 위한 모의연료 제조연구)

  • Hwang, J.S.;Won, J.H.;Kim, Y.H.;Jung, J.H.;Yoon, K.H.;Park, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.488-490
    • /
    • 2008
  • This study aims to design the high-capacity vol-oxidizer using simulated fuels instead of spent nuclear fuels. Simulated fuels are fabricated by blending tungsten powder with silicon carbide powder, and thereafter, paraffin coating covers simulated fuels to increase their strength. An oxidation experiment using simulated fuels have been carried out in order to analyze oxidation characteristics similar to spent fuels. After oxidation, simulated fuels were almost oxidized to be powders. Increased volume of simulated fuels approached to spent fuels. These results can be utilized as important informations for designing a high-capacity vol-oxidizer.

  • PDF

Ceramic Materials Selection of Fuel Crucibles based on Plasma Spray Coating for SFR

  • Song, Hoon;Kim, Jong-Hwan;Kim, Hyung-Tae;Ko, Young-Mo;Woo, Yoon-Myung;Oh, Seok-Jin;Kim, Ki-Hwan;Lee, Chan-Bock
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2012.10a
    • /
    • pp.131-132
    • /
    • 2012
  • The vacuum plasma coating was performed to analysis the characteristic and find the optimum process conditions for the vacuum plasma spray coating. It was observed that the square shape of powder in case of carbide ceramics does not fluidize well compared to the round shape of powder in case of oxide ceramics so that the plasma spraying is not uniform. The analysis through SEM and EDS mapping shows that the coatings represent excellent structural features with strong resistance against oxidation and satisfied result with vacuum plasma coating.

  • PDF

A Study on the Fabrication and Evaluation of Burnishing Drills for Aluminum Hole Making (알루미늄 홀 가공용 버니싱 드릴의 제작 및 평가에 관한 연구)

  • Ha, Jeong-Ho;Kim, Dong-Gyu;Sa, Min-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.53-63
    • /
    • 2022
  • Recently, the use of aluminum components in the reduction of the vehicle weight to improve fuel efficiency and reduce carbon dioxide emissions has increased. In the aluminum machining cutting process, hole-making is an important process that accounts for 30% of the machining process. Although many studies have been conducted using the continuously advancing hole processing technology, studies on the machinability of the tool depending on the type of chuck on the workpiece are still lacking. In this study, the machining performance of cemented carbide burnishing drills was compared and analyzed according to chuck type. The burnishing drill was used to create a hole in the AL6061 workpiece, and the surface roughness and dimensional accuracy of the hole were examined according to the type of chuck while monitoring the spindle load.

Direct Strength Evaluation of the CVD SiC Coating of TRISO Coated Fuel Particle with Micro Hemi Spherical Shell Configuration (마이크로 반구 쉘 형상의 화학증착 탄화규소 TRISO 코팅층의 파괴강도 직접평가)

  • Lee, Hyeon-Keun;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.368-374
    • /
    • 2007
  • CVD-SiC coating has been introduced as a protective layer in TRISO nuclear fuel particle of high temperature gas cooled reactor (HTGR) due to its excellent mechanical stability at high temperature. In order to prevent the failure of the TRISO particles, it is important to evaluate the fracture strength of the SiC coating layer. It is needed to develop a new simple characterization technique to evaluate the mechanical properties of the coating layer as a pre-irradiation step. In present work, direct strength measurement method with the specimen of hem i-spherical shell configuration was suggested. The indentation experiment on a hemisphere shell with a plate indenter was conducted. The fracture strength of the coating layer is related with the critical load for radial cracking of the shell. The finite element analysis was used to drive the semi-empirical equation for the strength measurement. The SiC hemispherical shells were successfully recovered from the section-grinding of TRISO coated particle and successive heat treatment in air. The strength of CVD-SiC coating layer was evaluated from the experimentally measured critical load during the indentation on SiC hemisphere shell. Weibull diagram of fracture strength was also constructed. This study suggested a new strength equation and experimental method to measure the fracture strength of CVD-SiC coating of TRISO coated fuel particles.