• Title/Summary/Keyword: Car-body

Search Result 704, Processing Time 0.029 seconds

A Study on Light Collision Safety of Tilting Train Express (TTX 경충돌 사고시 안전도 확보 방안에 관한 연구)

  • Cho Tae-Min;Kwon Tae-Soo;Jung Hyun-Seung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.634-639
    • /
    • 2004
  • Under light collision accidents, the energy absorption strategy for the coupler and expansion tube of the TTX(Tilting Train Express) initial design is established in the paper. Also, 1st shearing bolts are designed. When the absorbed energy of the coupler reaches its maximum, the connecting bolts between the coupler and the car body are sheared off not to transmit the impact force to the car body structure. To absorb more energy after the lst shearing bolts work, a expansion tube is designed conceptually and installed at the rear part of the coupler. Using Hyper-Mesh and LS-DYNA, pre/post processing and light collision analyses are preformed, respectively.

  • PDF

The Strength Comparisons between Double deck Car body Structures with Al Extruded Panels and SUS (Al 압출재 및 SUS 2층열차 차체의 강도해석 비교 검토)

  • 황원주;김형진;강부병;허현무
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.801-806
    • /
    • 2002
  • The operation of double deck train have increased in many countries such as Japan france, and the Netherlands as efficient, safe and convenient alternative transportation systems. Because of continuous concentration of population into Seoul metropolitan and serious traffic jam, the number of passengers using the commuter train have been increased rapidly. Considering these situations, we can find one of the solutions for heavy traffic problems through double deck trains. Stainless steel, and aluminum extruded panel are used to reduce the weight of double deck train. In this paper we compare the results of structural analysis of the double deck car body structures with Al extruded panels and stainless steel. We hope the results of this study may be used as basic guidelines in designing double deck trains in the future.

  • PDF

A Study and Application of Methodology for Applying Simulation to Car Body Assembly Line using Logical Model (Logical 모델을 활용한 자동차 차체 조립 라인의 시뮬레이션 적용을 위한 방안 연구 및 적용)

  • Koo, Lock-Jo;Park, Snag-Chul;Wang, Gi-Nam
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.4
    • /
    • pp.225-233
    • /
    • 2009
  • The objective of this paper is to examine a construction method and verify PLC logic using the logical modeling and simulation of a virtual plant has complex manufacturing system and the domain of application is car body assembly line of automotive industrial operated by PLC Program. The proposed virtual plant model for the analysis of the construction method consists of three types of components which are virtual device, intermediary transfer and controller is modeled by logical model but it the case of the verification of PLC program, HMI and PLC logic in the field substitute for the controller. The implementation of the proposed virtual plant model is conducted PLC Studio which is an object-oriented modeling language based on logical model. As a result, proposed methods enable 3D graphics is designed in the analysis step to use for verification of PLC program without special efforts.

A Study on the Optimization Design of Automotive Damper Using Genetic Algorithm (유전알고리즘을 이용한 차량용 댐퍼의 최적설계에 관한 연구)

  • Lee, Choon-Tae
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.80-86
    • /
    • 2018
  • A damper is a hydraulic device designed to absorb or eliminate shock impulses which is acting on the sprung mass of car body. It converts the kinetic energy of the shock into another form of energy, typically heat. The main mechanism for providing damping is by shearing the hydraulic fluid as it flows through restrictions. Since the damping mechanism depends on the flow restrictions, these restrictions are very important in damper design. Damper engineers often try several combinations of valve shims, piston orifices and bleed orifices before finding the best combination for a particular setup on a car. Therefore, the ability to tune a damper properly without testing is of great interest in damper design. For this reason, many previous researches have been done on modeling and simulation of the damper. This paper explains a genetic algorithm method to find the optimal parameters for the design objective and the simulation results agree well with the targeted damping characteristics.

Grinding robot system for car brazing bead

  • Kang, Hyo-Sik;Lee, Woo-Ho;Park, Jong-Oh;Lee, Gwang-Se;Shin, Hyoun-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.160-163
    • /
    • 1993
  • In this paper, design of an automatic grinding robot system for car brazing bead is introduced. Car roof and side panels are joined using brazing, and then the brazing bead is processed so that the bead is invisible after painting. Up to now the grinding process is accomplished manually. The difficulties in automation of the grinding process are induced by variation of position and shape of the bead and non-uniformity of the grinding area due to surface deformation. For each car, the grinding area including the brazing bead is sensed and then modeled using a 2-D optical sensor system. Using these model data, the position and the direction of discrete points on the car, body surface are obtained to produce grinding path for a 6 degrees of freedom grinding robot. During the process, it is necessary to sense the reaction forces continuously to prepare for the unexpected circumstances. In addition, to meet the line cycle time it is necessary to reduce the required time in sensing, signal processing, modeling, path planning and data transfer by utilizing real-time communication of the information. The key technique in the communication and integration of the complex information is obtaining in-field reliability. This automatic grinding robot system may be regarded as a jump in the intelligent robot processing technique.

  • PDF

A Study on a Robot for Moving a Double-parked Car (이중 주차된 차량을 이동하기 위한 로봇에 관한 연구)

  • Kim, Min-Chan;Sung, Young Whee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.233-244
    • /
    • 2020
  • A double-parked car is the one that is parked in a crowded parking lot with its transmission gear in neutral position and its auxiliary brake released. A double-parked car can be moved by pushing it but doing so is very difficult and dangerous. In a previous study, we proposed an omni-directional mobile robot for moving a double parked car. In that study we adopted Mecanum wheels. Even though the proposed robot showed successful results, it has some drawbacks such as dependency on a load condition, complexity in control, inefficiency in power use, etc. To overcome those drawbacks, we propose a differential drive robot with ordinary two tire wheels. The proposed robot consists of two parts, one is a wheel part and the other is a body part. By selectively connecting or disconnecting those two parts with the aid of an electric brake, the proposed robot is able to have omni-directional mobility.

Aerodynamic Performance Dependency on the Geometric Shape and Mounting Location of OSRVM (OSRVM의 형상 및 장착 위치가 차량의 공력성능에 미치는 영향)

  • Han, Hyun Wook;Park, Hyun Ho;Kim, Moon Sang;Ha, Jong Paek;Kim, Yong Nyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.30-42
    • /
    • 2013
  • This study investigates the effects of OSRVM mounting location and its configurations such as stalk height and housing height on the aerodynamic performance of the passenger car. In order to validate the flow solver, FLUENT which is very well known commercial code, the flow field around an Ahmed Body was analyzed numerically and compared with the experimental data. The predicted aerodynamic performance and flow patterns around a car show good agreements with the experimental data. Mounting location and stalk height should be designed while OSRVM is mounted on the car to evaluate the aerodynamic performance precisely. Housing height, however, may be designed independent of the car because the aerodynamic interference between housing height and car configuration is negligible.

Modeling of Automobile Suspension System for Analyzing Automobile Vibration (자동차 진동해석을 위한 자동차 현가계의 모델링)

  • Lee, Tae-keun;Kim, Byong-sam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.135-147
    • /
    • 2005
  • As automobile technology advances, a smoother ride with less noise is desired. In order to achieve these purposes, a study on the vibration and noise produced by a moving automobile was carried out and a model for tire vibration characteristics which influence the ride performance was developed. The model was verified through simulations and experiments. The developed model was then applied to a half car model and automobile vibrations were analyzed. The effects of tire design parameters on the automobile vibration energy were investigated. The results from laboratory and field tests confirm the validity of the analytical model. The 17-DOF half-car model was built to analyze automobile vibration. The characteristics of the nonlinear model for a shock absorber were applied to this model. The results from the present 17-DOF half car model incorporating the analytical tire model with tire design parameters, were compared with the 5-DOF half car model where the tire was modeled with linear springs. The results of the 17-DOF model are close to the experimental results. Using the 17-DOF model, the influence of tire design parameter were considered. According to the analysis results, the vibrations at seat/body/wheel were predicted by simulation and experiment.

An Integrated Model of Static and Dynamic Measurement for Seat Discomfort

  • Daruis, Dian Darina Indah;Deros, Baba Md;Nor, Mohd Jailani Mohd;Hosseini, Mohammad
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.3
    • /
    • pp.185-190
    • /
    • 2011
  • A driver interacts directly with the car seat at all times. There are ergonomic characteristics that have to be followed to produce comfortable seats. However, most of previous researches focused on either static or dynamic condition only. In addition, research on car seat development is critically lacking although Malaysia herself manufactures its own car. Hence, this paper integrates objective measurements and subjective evaluation to predict seat discomfort. The objective measurements consider both static and dynamic conditions. Steven's psychophysics power law has been used in which after expansion; ${\psi}\;=\;a+b{\varphi}_s^{\alpha}+c{\varphi}_v^{\beta}$ where ${\psi}$ is discomfort sensation, ${\varphi}_s^{\alpha}$ is static modality with exponent ${\alpha}$ and ${\varphi}_v^{\beta}$ is dynamic modality with exponent ${\beta}$. The subjects in this study were local and the cars used were Malaysian made compact car. Static objective measurement was the seat pressure distribution measurement. The experiment was carried out on the driver's seat in a real car with the engine turned off. Meanwhile, the dynamic objective measurement was carried out in a moving car on real roads. During pressure distribution and vibration transmissibility experiments, subjects were requested to evaluate their discomfort levels using vehicle seat discomfort survey questionnaire together with body map diagram. From subjective evaluations, seat pressure and vibration dose values exponent for static modality ${\alpha}$ = 1.51 and exponent for dynamic modality ${\beta}$ = 1.24 were produced. The curves produced from the $E_{q.s}$ showed better $R_{-sq}$ values (99%) when both static and dynamic modalities were considered together as compared to Eq. with single modality only (static or dynamic only R-Sq = 95%). In conclusion, car seat discomfort prediction gives better result when seat development considered both static and dynamic modalities; and using ergonomic approach.