자동차의 번호판을 인식하는 것은 차량을 식별하는데 있어서 매우 중요하다. 어두운 조명에서나 날씨가 나쁠 경우 차량의 형상이 왜곡 될 수 있고, 번호판을 식별하는데 어려움이 있다. 본 논문은 차량의 규격을 이용하여 효율적으로 번호판을 추출하는 방법을 제안한다. 이 방법에서 색상이나 형태처럼 차량의 규격을 따르는 자동차 번호판의 특징들은 번호판의 후보영역으로 결정되고, 신경망에 의해 숫자나 문자의 패턴 갖는 영역이 번호판 영역으로 인식된다. 또한 특징패턴인식의 결과로서 번호판을 확정하였다. 70개 차량영상을 실험해 본 결과 번호판 추출률에서는 84.29 %, 인식률에서는 80.81 %의 결과를 나타내었다.
자동차의 번호판을 인식하는 것은 차량을 식별하는데 있어서 매우 중요하다. 어두운 조명에서나 날씨가 나쁠 경우 차량의 형상이 왜곡 될 수 있고, 번호판을 식별하는데 어려움이 있다. 본 논문은 차량의 규격을 이용하여 효율적으로 번호판을 추출하는 방법을 제안한다. 이 방법에서 색상이나 형태처럼 차량의 규격을 따르는 자동차 번호판의 특징들은 번호판의 후보영역으로 결정되고, 신경망에 의해 숫자나 문자의 패턴 갖는 영역이 번호판 영역으로 인식된다. 또한 특징패턴인식의 결과로서 번호판을 확정하였다. 70개 차량영상을 실험해 본 결과 번호판 추출률에서는 84.29 %, 인식률에서는 80.81 %의 결과를 나타내었다.
자동차 번호판 인식 시스템에서 가장 중요한 요소는 자동차 이미지로부터 번호판 영역을 정확히 검출해 내는 것이다. 자동차 이미지에서 번호판 영역을 추출하기 위한 방법으로 색상과 밝기 정보와 자동차 번호판의 가로 : 세로 비율 등 번호판을 인식할 수 있는 정보를 혼용한 ACL 알고리즘을 제안한다 ACL 알고리즘을 사용함으로써 기존의 색상 정보나 명암 정보만을 이용할 경우 자동차 번호판 영역 추출이 잘되지 않는 문제를 해소시켜 준다. 본 논문에서 제안하는 ACL 알고리즘은 자동차 이미지에서 번호판 영역을 추출하기 위하여 색상 정보와 명암 정보, 기타 자동차 번호판을 판단할 수 있는 정보를 모두 이용한다. ACL 알고리즘을 이용하여 번호판 추출 실험을 한 결과 97%의 추출률을 보였다. ACL 알고리즘을 이용하여 추출된 번호판을 이용하여 문자 영역, 문자 인식을 실험한 결과 92%의 결과를 보였다.
Journal of information and communication convergence engineering
/
제6권4호
/
pp.444-447
/
2008
In this paper, we proposed the recognition system of car license plates to mitigate traffic problems. The processing sequence of the proposed algorithm is as follows. At first, a license plate segment is extracted from an acquired car image using morphological features and color information, and noises are eliminated from the extracted license plate segment using line scan algorithm and Grassfire algorithm, and then individual codes are extracted from the license plate segment using edge tracking algorithm. Finally the extracted individual codes are recognized by an FCM algorithm. In order to evaluate performance of segment extraction and code recognition of the proposed method, we used 100 car images for experiment. In the results, we could verify the proposed method is more effective and recognition performance is improved in comparison with conventional car license plate recognition methods.
신 차량 번호판 차량이 꾸준히 증가함에 따라, 교통위반 단속, 무인 주차 관리 시스템, 범죄 및 도난 차량 검거를 위한 신 자동차 번호판의 특징에 맞는 인식 시스템이 요구되고 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 지능형 신 자동차 번호판 인식 방법을 제안하였다. 무인 카메라에서 획득된 신 차량 영상을 그레이 레벨로 변환한 후에 블록 이진화한다. 블록 이진화된차량 영상을 대상으로 차량의 형태학적 특징을 적용하여 잡음을 제거한 후, 번호판 영역을 추출한다. 추출된 번호판 영역에 대해 Grassfire 알고리즘을 적용하여 개별 코드를 추출한다. 차량 번호판을 인식하기 위하여 추출된 개별 코드를 퍼지 ART 알고리즘을 적용하여 학습 및 인식한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위해 100장의 차량 영상을 대상으로 실험한 결과, 제안된 차량 번호판 추출 및 인식 방법이 실험을 통해서 효율적인 것을 확인하였다.
자동차 번호판 인식 시스템에서 가장 중요한 요소가 자동차 이미지 영역에서 번호판 영역을 정확히 검출해 내는 것이다. 자동차 이미지에서 번호판 영역을 추출하기 위한 방법으로 색상과 밝기 정보와 자동차 번호판의 가로 세로 비율 등 번호판을 인식할 수 있는 정보를 혼용한 ACL 알고리즘을 제안한다. ACL 알고리즘을 사용함으로써 기존의 색상 정보나 명암 정보만을 이용할 경우 자동차 번호판 영역 추출이 잘되지 않는 문제를 해소시켜 준다. 본 논문에서 제안하는 ACL 알고리즘은 자동차 이미지에서 번호판 영역을 추출할 경우 색상 정보와 명암정보, 기타 자동차 번호판을 판단할 수 있는 정보를 모두 이용한다. ACL 알고리즘을 이용하여 번호판 추출 실험을 한 결과 97%의 추출률을 보였다. ACL 알고리즘을 이용하여 추출된 번호판을 이용하여 문자 영역, 문자 인식을 한 결과 92%의 결과를 보였다.
Lim, Eun-Kyung;Kim, Young-Ju;Kim, Dae-Su;Kwang-Baek, Kim
한국지능시스템학회:학술대회논문집
/
한국퍼지및지능시스템학회 2003년도 ISIS 2003
/
pp.648-651
/
2003
In this paper, we propose the recognition system of a license plate using SOM algorithm. The recognition of license plate was investigated by means of the SOM algorithm. The morphological information of horizontal and vertical edges was used to extract a plate region from a car image. In addition, the 4-direction contour tracking algorithm was applied to extract the specific area, which includes characters from an extracted plate area. Therefore, we proposed how to extract license plate region using morphological information and how to recognize the character string using SOM algorithm. In this paper, 50 car images were tested. The extraction rate obtained by the proposed extraction method showed better results than that from the color information of RGB and HSI, respectively. And the license plate recognition using SOM algorithm was very efficient.
최근 몇 년간 차량 번호판 영상을 인식하는 기술은 많은 발전을 이루어 왔다. 정확한 인식을 위한 핵심기술은 차량 번호판 영역의 정확한 추출이다. 기존의 연구들이 수평/수직 에지와 번호판의 기하학적 성질을 이용하였고, 현재는 칼라 성분을 이용하는 방법들이 연구되고 있다. 그러나 에지 정보나 칼라 정보로 번호판을 추출할 경우, 번호판을 보는 시각에 따른 기울어진 번호판의 정확한 영역 추출이 어렵다. 따라서 본 연구에서는 칼라 정보를 이용하여 후보 영역을 추출한후 선형 회귀 방정식을 사용하여 보다 정확하게 차량 번호판 영역을 추출할 수 있었다.
본 논문에서는 1-D DCT를 이용한 차량 영상의 번호판 영역 및 번호판의 문자 영역을 효과적으로 분할하는 방법을 제안한다. 차량 영상에서 번호판 영역과 번호판의 문자영역은 일정 크기의 고주파 성분에 의하여 구별될 수 있다. 본 방법은 이러한 고주파 성분을 DCT로써 추출하고, 추출된 고주파 성분에 의하여 번호판 영역과 문자영역을 분리하는 방법을 보인다. 또한 제안된 방법에 대한 타당성을 보이기 위하여, 다양한 영상에 대해 실험하였다. 그 결과, 간단한 전처리 만으로 비교적 정확한 번호판 영역 추출이 가능하였으며, 보다 효과적으로 문자영역을 분리할 수 있음을 확인할 수 있었다.
본 논문에서는 동적인 임계화 방법과 코호넨 알고리즘을 이용하여 차량 번호판을 인식하는 알고리즘을 제안하였다. 일반적으로 차량 영상에서 번호판 영역은 문자와 배경의 자기가 뚜렷하게 구별되고, 일정한 크기 비율을 가지면서 다른 영역보다 밀집 비율이 높게 나타난다. 본 논문은 이런 차량 영상의 속성을 이용하여 차량 영상에 대해 동적인 임계화를 수행하였고 밀집 비율을 계산하여 번호판 영역을 추출하였다. 추출된 번호판에서 문자와 숫자를 포함하는 특징 영역을 추출하기 위해 코호겐 알고리즘을 적용한 윤곽선 추적 방법을 이용하였다. 번호판의 문자와 숫자들은 코호넨 알고리즘을 이용하여 인식하였다. 코호넨 알고리즘은 윤곽선에서 생성되는 잡음을 최대한으로 줄여주는 특성을 가진다. 다양한 환경에서 촬영된 80장의 영상에 대하여 인식 실험을 수행한 결과, 제안된 방법이 차량 번호판의 인식에 우수한 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.