Journal of the Korea Institute of Information and Communication Engineering
/
v.6
no.2
/
pp.339-345
/
2002
Extracting of car licens plate os important for identifying the car. Since there are some problems such as poor ambient lighting problem, bad weather problem and so on, the car images are distorted and the car license plate is difficult to be extracted. This paper proposes a method of extracting car license plate using motor vehicle regulation. In this method, some features of car license plate according to motor vehicle regulation such as color information, shape are applied to determine the candidate of car license plates. For the result of recognition by neural network, the candidate which has characters and numbers patterns according to motor vehicle regulation is certified as license-plate region. The results of the experiments with 70 samples of real car images shoe the performance of car license-plate extraction by 84.29%, and the recognition rate is 80.81%.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2001.10a
/
pp.596-599
/
2001
Extracting of car licens plate is important for identifying the car. Since there are some problems such as poor ambient lighting problem, bad weather problem and so on, the car images we distorted and the tar license plate is difficult to be extracted. This paper proposes a method of extracting car license plate using motor vehicle regulation. In this method, some features of car license plate according to motor vehicle regulation such as color information, shape are applied to determine the candidate of car license plates. For the result of recognition by neural network, the candidate which has characters and numbers patterns according to motor vehicle regulation is certified as license-plate region. The results of the experiments with 70 samples of real car images shoe the performance of car license-plate extraction by 84.29%, and the recognition rate is 80.81%.
In recognition system of the car license plate, the most important is to extract the image of the license plate from a car image. In this paper, we use ACL (Adaptive Color Luminance) algorithm to extract the license plate image from a car image. The ACL algorithm that uses color and luminance information of a car image is used to extract the image of the license plate. In this paper, color, luminance and other related information of a car image are used to extract the image of the license plate from that of a car. In this reason, we call it the ACL algorithm. The ACL algorithm uses color, luminance information and other related information of a license plate. These informations are avaliable to exact the image of the license plate. The rate of extracting the image of the license plate from a car is 97%. The experimental result of the ACL algorithm for the character region is 92%.
Journal of information and communication convergence engineering
/
v.6
no.4
/
pp.444-447
/
2008
In this paper, we proposed the recognition system of car license plates to mitigate traffic problems. The processing sequence of the proposed algorithm is as follows. At first, a license plate segment is extracted from an acquired car image using morphological features and color information, and noises are eliminated from the extracted license plate segment using line scan algorithm and Grassfire algorithm, and then individual codes are extracted from the license plate segment using edge tracking algorithm. Finally the extracted individual codes are recognized by an FCM algorithm. In order to evaluate performance of segment extraction and code recognition of the proposed method, we used 100 car images for experiment. In the results, we could verify the proposed method is more effective and recognition performance is improved in comparison with conventional car license plate recognition methods.
Journal of the Korea Society of Computer and Information
/
v.13
no.6
/
pp.273-278
/
2008
Cars attaching new license plates are increasing after introducing the new format of car license plate in Korea. Therefore, a car new license plate recognition system is required for various fields using automatic recognition of car license plates, automatic parking management systems and arrest of criminal or missing vehicles. In this paper, we proposed an intelligent new car license plate recognition method for the various fields. The proposed method is as follows. First of all, an acquired color image from a surveillance camera is converted to a gray level image and binarized by block binarization method. Second, noises of the binarized image removed by morphological characteristics of cars and then license plate area is extracted. Third, individual characters are extracted from the extracted license plate area using Grassfire algorithm. lastly, the extracted characters are learned and recognized by a fuzzy ART algorithm for final car license plate recognition. In the experiment using 100 car images, we could see that the proposed method is efficient.
In the car license plate recognition system, it is very important to extract the part of the license plate from the car image. In this paper, I use ACL algorithm to extract the license plate image from car image. The ACL algorithm is used to color and luminance information, either. Therefore in this paper, suggested algorithm is called ACL algorithm The ACL algorithm uses color, luminance information and the rate of license plate information Each of these information are used to exact area of license plate. The result of experiment to extract the car license plate with ACL algorithm is 97% extraction rate. The result of experiment with ACL algorithm for the character region, character recognition is 92% extraction rate.
Lim, Eun-Kyung;Kim, Young-Ju;Kim, Dae-Su;Kwang-Baek, Kim
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09a
/
pp.648-651
/
2003
In this paper, we propose the recognition system of a license plate using SOM algorithm. The recognition of license plate was investigated by means of the SOM algorithm. The morphological information of horizontal and vertical edges was used to extract a plate region from a car image. In addition, the 4-direction contour tracking algorithm was applied to extract the specific area, which includes characters from an extracted plate area. Therefore, we proposed how to extract license plate region using morphological information and how to recognize the character string using SOM algorithm. In this paper, 50 car images were tested. The extraction rate obtained by the proposed extraction method showed better results than that from the color information of RGB and HSI, respectively. And the license plate recognition using SOM algorithm was very efficient.
Proceedings of the Korea Contents Association Conference
/
2003.11a
/
pp.218-222
/
2003
A technology that recognize the car license plate have accomplished a lot of developments for latest several years. Key technology for correct recognition is correct abstraction of plate area. Existent studies have used horizontal/vertical edge, some geometrical characteristics of license plate, and the color information. But, in case of extracting a plate using above characteristics, correct extraction of a license plate inclined by sight which see license plate is difficult. Therefore, this paper is propose new method that correctly extract license plate using the color information and linear regression method.
Journal of the Korean Institute of Telematics and Electronics C
/
v.36C
no.1
/
pp.73-81
/
1999
This paper describes the methods which segment more efficiently the car license plate and the character region by using 1-D DCT. In the car images, a license plate region and a character region of the license plate can be distingushed by the regular high frequency components from the car images. In this method, it is shown that the regular high frequency componets are extracted by using DCT and license plate region is segmented in the car image and the caracter region is then seperated at the extracted license plate by using the previously extracted regular high frequency components. Some experiment results of the various images are shown. It has been shown from the results that the car license plates and the character regions can be segmented more exactly and efficiently than conventional methods.
The Journal of Korean Institute of Communications and Information Sciences
/
v.26
no.12A
/
pp.2019-2026
/
2001
In this paper, we proposed the car license plate extraction and recognition algorithm using both the dynamical thresholding method and the kohonen algorithm. In general, the areas of car license plate in the car images have distinguishing characteristics, such as the differences in intensity between the areas of characters and the background of the plates, the fixed ratio of width to height of the plates, and the higher dynamical thresholded density rate 7han the other areas, etc. Taking advantage of the characteristics, the thresholded images were created from the original images, and also the density rates were computed. A candidate area was selected, whose density rate was corresponding to the properties of the car license plate obtained from the car license plate. The contour tracking method by utilizing the Kohonen algorithm was applied to extract the specific area which included characters and numbers from an extracted plate area. The characters and numbers of the license place were recognized by using Kohonen algorithm. Kohonen algorithm was very effective o? suppressing noises scattered around the contour. In this study, 80 car images were tested. The result indicate that we proposed is superior in performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.