• Title/Summary/Keyword: Car Detection

Search Result 350, Processing Time 0.026 seconds

Traumatic Brain Injury-Induced Mixed Chemosensory Disorder: a Case Study on Taste and Smell Dysfunction

  • Yeong-Gwan Im;Seul Kee Kim;Chung Man Sung;Jae-Hyung Kim
    • Journal of Oral Medicine and Pain
    • /
    • v.48 no.4
    • /
    • pp.181-185
    • /
    • 2023
  • We present a case report of a 52-year-old male patient who suffered head trauma in a car accident and subsequently experienced taste and smell disorders. Following the accident, the patient reported difficulty detecting salty and sour tastes and diminished olfactory perception. Neurosurgical evaluation revealed subarachnoid and subdural hemorrhages, while otolaryngology investigations revealed hyposmia-a decreased sense of smell. Upon referral to the Department of Oral Medicine, a comprehensive assessment revealed a general bilateral reduction in taste sensation, particularly ageusia for salty taste. Electric taste-detection thresholds significantly exceeded the normal ranges. Integrating our findings from neurosurgery, otolaryngology, and oral medicine resulted in a diagnosis of mixed chemosensory disorder attributed to head trauma. This case highlights the intricate interplay of alterations in taste and smell following head injury, emphasizing the significance of multidisciplinary evaluations in diagnosing mixed chemosensory disorders resulting from traumatic brain injury.

Queue Length Based Real-Time Traffic Signal Control Methodology Using sectional Travel Time Information (구간통행시간 정보 기반의 대기행렬길이를 이용한 실시간 신호제어 모형 개발)

  • Lee, Minhyoung;Kim, Youngchan;Jeong, Youngje
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • The expansion of the physical road in response to changes in social conditions and policy of the country has reached the limit. In order to alleviate congestion on the existing road to reconsider the effectiveness of this method should be asking. Currently, how to collect traffic information for management of the intersection is limited to point detection systems. Intelligent Transport Systems (ITS) was the traffic information collection system of point detection method such as through video and loop detector in the past. However, intelligent transportation systems of the next generation(C-ITS) has evolved rapidly in real time interval detection system of collecting various systems between the pedestrian, road, and car. Therefore, this study is designed to evaluate the development of an algorithm for queue length based real-time traffic signal control methodology. Four coordinates estimate on time-space diagram using the travel time each individual vehicle collected via the interval detector. Using the coordinate value estimated during the cycle for estimating the velocity of the shock wave the queue is created. Using the queue length is estimated, and determine the signal timing the total queue length is minimized at intersection. Therefore, in this study, it was confirmed that the calculation of the signal timing of the intersection queue is minimized.

Learning-based Detection of License Plate using SIFT and Neural Network (SIFT와 신경망을 이용한 학습 기반 차량 번호판 검출)

  • Hong, Won Ju;Kim, Min Woo;Oh, Il-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.187-195
    • /
    • 2013
  • Most of former studies for car license plate detection restrict the image acquisition environment. The aim of this research is to diminish the restrictions by proposing a new method of using SIFT and neural network. SIFT can be used in diverse situations with less restriction because it provides size- and rotation-invariance and large discriminating power. SIFT extracted from the license plate image is divided into the internal(inside class) and the external(outside class) ones and the classifier is trained using them. In the proposed method, by just putting the various types of license plates, the trained neural network classifier can process all of the types. Although the classification performance is not high, the inside class appears densely over the plate region and sparsely over the non-plate regions. These characteristics create a local feature map, from which we can identify the location with the global maximum value as a candidate of license plate region. We collected image database with much less restriction than the conventional researches. The experiment and evaluation were done using this database. In terms of classification accuracy of SIFT keypoints, the correct recognition rate was 97.1%. The precision rate was 62.0% and recall rate was 50.2%. In terms of license plate detection rate, the correct recognition rate was 98.6%.

A Study on the Spacing Distrubution based on Relative Speeds between Vehicles -Focused on Uninterrupted Traffic Flow- (차량간 상대속도에 따른 차두거리 분포에 관한 연구 -연속류 교통흐름을 중심으로-)

  • Ma, Chang-Young;Yoon, Tae-Kwan;Kim, Byung-Kwan
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • This study analyzes traffic data which are collected by VDS(Vehicle Detection System) to research the relationship between spacing distribution and vehicles' relative speed. The collected data are relative speed between preceding and following vehicles, passing time and speed. They are also classified by lane and direction. For the result of the analysis, in the same platoon, we figure out that mean of spacing is 40m, which can be a value to determine section A to D. To compare spacing according to time interval, this study splits time intervals to peak hour and non-peak hour by peak hour traffic volume. In conclusion, vehicles in peak hour are in car following because most drive similar speed as preceding vehicle and they have relatively small spacing. On the other hand, non-peak hour's spacing between vehicles is bigger than that of peak hour. This implies driver's behaviors that the less spacing, the more aggressive and want to reduce their travel time in peak hour, whereas most drive easily in non-peak hour and recreational trip purpose because of less time pressure.

Comparison of Solid Phase Microextraction-Gas Chromatograph/Pulsed Flame Photometric Detector (SPME-GC/PFPD) and Static Headspace-Gas Chromatograph/Pulsed Flame Photometric Detector (SH-GC/PEPD) for the Analysis of Sulfur-Containing Compounds (Solid phase microextraction-gas chromatograph/pulsed flame photometric detector(SPME-GC/PFPD)와 static headspace-gas chromatograph/pulsed flame photometric detector(SH-GC/PEPD)를 이용한 황 함유 화합물들의 분석 방법 비교)

  • Yang, Ji-Yeon;Kim, Young-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.695-701
    • /
    • 2005
  • Efficient method was established for analysis of sulfur-containing compounds, including dimethyl disulfide, dimethyl trisulfide, 3-methyl thiophene, allyl mercaptan, 2-methyl-3-furanthiol, and methional. Sulfur-containing compounds were extracted through solid phase microextraction (SPME) or static headspace extraction (SH), and quantified using gas chromatograph equipped with pulsed flame photometric detector. All sulfur compounds, except ally mercaptan, showed higher detection response when dissolved in hexane than in dichloromethane. Linear range was $10^2-10^4$. Dimethyl trisulfide showed lowest limit of detection (LOD) value of 15.2 ppt, and methional highest of 70.5 ppb. Highest extraction efficiency for sulfur-containing compounds, particularly polar and small molecular weight compounds, was observed in 75mm carboxen/polydimethylsiloxane fiber, followed by 65mm polydimethylsiloxane/divinylbenzene and 100mm polydimethylsiloxane. Compared to SPME, less sulfur-containing compounds could be analyzed by SH, mainly due to its low extraction efficiency, although lower amount of artifacts were formed during sample preparation.

Crash Clearance Time Analysis of Korean Freeway Systems using a Cox Model (Cox 모형을 활용한 고속도로 사고 처리시간 영향인자 분석)

  • Chung, Younshik;Kim, Seon Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.1017-1023
    • /
    • 2017
  • Duration induced by freeway crashes has a critical influence on traffic congestion. In general, crash duration composes detection and verification, response, and clearance time. Of these, the crash clearance time determined by a crash clearance team has attracted considerable attention in the freeway congestion management since the interest of the first two time stages faded away with increasing ubiquitous mobile phone users. The objective of this study is to identify the critical factors that affect freeway crash clearance time using a Cox's proportional hazard model. In total, 6,870 crash duration data collected from 30 major Korean freeways in 2013 were used. As a result, it was found that crashes during the night, with trailer or larger size truck, and in tunnel section contribute to increasing clearance time. Crashes associated with fatality, completed damage of crashed vehicle (s), and vehicles' fire or rollover after crash also lead to increasing clearance time. Additionally, an increase in the number of vehicles involved resulted in longer clearance time. On the other hand, crashes in the vicinity of tollgate, by passenger car, during spring, on flat section, and of car-facility type had longer clearance time. On the basis of the results, this paper suggested some strategic plans and mitigation measures to reduce crash clearance time on Korean freeway systems.

Flaw Evaluation of Bogie connected Part for Railway Vehicle Based on Convolutional Neural Network (CNN 기반 철도차량 차체-대차 연결부의 결함 평가기법 연구)

  • Kwon, Seok-Jin;Kim, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.53-60
    • /
    • 2020
  • The bogies of railway vehicles are one of the most critical components for service. Fatigue defects in the bogie can be initiated for various reasons, such as material imperfection, welding defects, and unpredictable and excessive overloads during operation. To prevent the derailment of a railway vehicle, it is necessary to evaluate and detect the defect of a connection weldment between the car body and bogie accurately. The safety of the bogie weldment was checked using an ultrasonic test, and it is necessary to determine the occurrence of defects using a learning method. Recently, studies on deep learning have been performed to identify defects with a high recognition rate with respect to a fine and similar defect. In this paper, the databases of weldment specimens with artificial defects were constructed to detect the defect of a bogie weldment. The ultrasonic inspection using the wedge angle was performed to understand the detection ability of fatigue cracks. In addition, the convolutional neural network was applied to minimize human error during the inspection. The results showed that the defects of connection weldment between the car body and bogie could be classified with more than 99.98% accuracy using CNN, and the effectiveness can be verified in the case of an inspection.

Determination of polycyclic aromatic hydrocarbons (PAHs) in used lubricating car oils (차량용 폐윤활유에 함유된 다환 방향족 탄화수소 (PAHs)의 분석)

  • Yoo, Kwang-Sik;Jyoung, Ji-Young;Jeong, Seon-Yi;Woo, Sang-Beom
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.339-348
    • /
    • 2003
  • Determination of some PAHs in used engine oils have been carried out by extraction of the components into acetonitrile followed by GC/FID and synchronous spectrofluorimetric technique. 7 PAHs, such as acenaphthene (Ace), anthracene (Anth), benzo(a)pyrene (BaP), chrysene (Chry), phenanthrene (Phen), fluoranthene (Ft), and perlyrene (Per) in used engine oil sample were able to determine separately by synchronous spectrofluorimetry. Calibration curves for those components were linear for the concentration range of 0.4~166 ppb PAHs with the corelation factor of 0.9985~0.9999. The peak areas produced by GC/FID split ratio program were used for the calibration curves of the other 8 PAHs. Detection sensitivity of the synchronous spectrofluorimetry seems to be 100 times more sensitive than GC/FID method. The total amount of PAHs in the used engine oil were 5.5 ng/g for LNG (bus), 10.5 ng/g for LPG(taxi), 92.2 ng/g for gasoline-passenger car, and 130 ng/g for diesel trailer, respectively.

IMToon: Image-based Cartoon Authoring System using Image Processing (IMToon: 영상처리를 활용한 영상기반 카툰 저작 시스템)

  • Seo, Banseok;Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.2
    • /
    • pp.11-22
    • /
    • 2017
  • This study proposes IMToon(IMage-based carToon) which is an image-based cartoon authoring system using an image processing algorithm. The proposed IMToon allows general users to easily and efficiently produce frames comprising cartoons based on image. The authoring system is designed largely with two functions: cartoon effector and interactive story editor. Cartoon effector automatically converts input images into a cartoon-style image, which consists of image-based cartoon shading and outline drawing steps. Image-based cartoon shading is to receive images of the desired scenes from users, separate brightness information from the color model of the input images, simplify them to a shading range of desired steps, and recreate them as cartoon-style images. Then, the final cartoon style images are created through the outline drawing step in which the outlines of the shaded images are applied through edge detection. Interactive story editor is used to enter text balloons and subtitles in a dialog structure to create one scene of the completed cartoon that delivers a story such as web-toon or comic book. In addition, the cartoon effector, which converts images into cartoon style, is expanded to videos so that it can be applied to videos as well as still images. Finally, various experiments are conducted to verify the possibility of easy and efficient production of cartoons that users want based on images with the proposed IMToon system.

Implement module system for detection sudden unintended acceleration (자동차급발진을 감지하기 위한 모듈 시스템 구현)

  • Cha, Jea-Hui;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.255-257
    • /
    • 2017
  • These days automotive markets are launching models that include a variety of IT technologies. Tesla's Tesla model S and Google's unmanned automobiles are emerging one after another. This type of automobile with IT technology provides various convenience to the driver and the driver is getting benefit by various conveience services. on the contrary, it is also true that defects for errors in electronic components cause accidents that threaten the safety of drivers. There is a sudden unintended acceleration among these accidents. The cause of the accident is not clear yet, but the claim that the ECU device caused by the magnetic field causes accident of the car due is the most reliable. But, in Korea, when occur a car sudden unintended acceleration accident, the char maker often claims that an accident occurred due to driver's pedal malfunction. Also most drivers are responsible for the lack of grounds to refute. In this paper, the pedal operation image of the driver is acquired and the sensor is attached to the control part such as the excel and brake so as to discriminate whether the vehicle sudden unintended acceleration accident is the driver's pedal operation error or the fault of. i have implemented a system that can do this.

  • PDF