• Title/Summary/Keyword: Capture behavior

Search Result 336, Processing Time 0.022 seconds

Hybrid Movie Recommendation System Using Clustering Technique (클러스터링 기법을 이용한 하이브리드 영화 추천 시스템)

  • Sophort Siet;Sony Peng;Yixuan Yang;Sadriddinov Ilkhomjon;DaeYoung Kim;Doo-Soon Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.357-359
    • /
    • 2023
  • This paper proposes a hybrid recommendation system (RS) model that overcomes the limitations of traditional approaches such as data sparsity, cold start, and scalability by combining collaborative filtering and context-aware techniques. The objective of this model is to enhance the accuracy of recommendations and provide personalized suggestions by leveraging the strengths of collaborative filtering and incorporating user context features to capture their preferences and behavior more effectively. The approach utilizes a novel method that combines contextual attributes with the original user-item rating matrix of CF-based algorithms. Furthermore, we integrate k-mean++ clustering to group users with similar preferences and finally recommend items that have highly rated by other users in the same cluster. The process of partitioning is the use of the rating matrix into clusters based on contextual information offers several advantages. First, it bypasses of the computations over the entire data, reducing runtime and improving scalability. Second, the partitioned clusters hold similar ratings, which can produce greater impacts on each other, leading to more accurate recommendations and providing flexibility in the clustering process. keywords: Context-aware Recommendation, Collaborative Filtering, Kmean++ Clustering.

Investigation of nonlinear vibration behavior of the stepped nanobeam

  • Mustafa Oguz Nalbant;Suleyman Murat Bagdatli;Ayla Tekin
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.215-224
    • /
    • 2023
  • Nonlinearity plays an important role in control systems and the application of design. For this reason, in addition to linear vibrations, nonlinear vibrations of the stepped nanobeam are also discussed in this manuscript. This study investigated the vibrations of stepped nanobeams according to Eringen's nonlocal elasticity theory. Eringen's nonlocal elasticity theory was used to capture the nanoscale effect. The nanoscale stepped Euler Bernoulli beam is considered. The equations of motion representing the motion of the beam are found by Hamilton's principle. The equations were subjected to nondimensionalization to make them independent of the dimensions and physical structure of the material. The equations of motion were found using the multi-time scale method, which is one of the approximate solution methods, perturbation methods. The first section of the series obtained from the perturbation solution represents a linear problem. The linear problem's natural frequencies are found for the simple-simple boundary condition. The second-order part of the perturbation solution is the nonlinear terms and is used as corrections to the linear problem. The system's amplitude and phase modulation equations are found in the results part of the problem. Nonlinear frequency-amplitude, and external frequency-amplitude relationships are discussed. The location of the step, the radius ratios of the steps, and the changes of the small-scale parameter of the theory were investigated and their effects on nonlinear vibrations under simple-simple boundary conditions were observed by making comparisons. The results are presented via tables and graphs. The current beam model can assist in designing and fabricating integrated such as nano-sensors and nano-actuators.

Process Design of Carbon Dioxide Storage in the Marine Geological Structure: I. Comparative Analysis of Thermodynamic Equations of State using Numerical Calculation (이산화탄소 해양지중저장 처리를 위한 공정 설계: I. 수치계산을 통한 열역학 상태방정식의 비교 분석)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.4
    • /
    • pp.181-190
    • /
    • 2008
  • To response climate change and Kyoto protocol and to reduce greenhouse gas emissions, marine geological storage of $CO_2$ is regarded as one of the most promising option. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources(eg. power plant), to transport to the storage sites and to store $CO_2$ into the marine geological structure such as deep sea saline aquifer. To design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. The purpose of this paper is to compare and analyse the relevant equations of state including ideal, BWRS, PR, PRBM and SRK equation of state. To evaluate the predictive accuracy of the equation of the state, we compared numerical calculation results with reference experimental data. Ideal and SRK equation of state did not predict the density behavior above $29.85^{\circ}C$, 60 bar. Especially, they showed maximum 100% error in supercritical state. BWRS equation of state did not predict the density behavior between $60{\sim}80\;bar$ and near critical temperature. On the other hand, PR and PRBM equation of state showed good predictive capability in supercritical state. Since the thermodynamic conditions of $CO_2$ reservoir sites correspond to supercritical state(above $31.1^{\circ}C$ and 73.9 bar), we conclude that it is recommended to use PR and PRBM equation of state in designing of $CO_2$ marine geological storage process.

  • PDF

A Numerical Study on the CO2 Leakage Through the Fault During Offshore Carbon Sequestration (해양지중에 저장된 이산화탄소의 단층을 통한 누출 위험 평가에 관한 수치해석 연구)

  • Kang, Kwangu;Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.94-101
    • /
    • 2015
  • To mitigate the greenhouse gas emission, many carbon capture and storage projects are underway all over the world. In Korea, many studies focus on the storage of $CO_2$ in the offshore sediment. Assurance of safety is one of the most important issues in the geological storage of $CO_2$. Especially, the assessment of possibility of leakage and amount of leaked $CO_2$ is very crucial to analyze the safety of marine geological storage of $CO_2$. In this study, the leakage of injected $CO_2$ through fault was numerically studied. TOUGH2-MP ECO2N was used to simulate the subsurface behavior of injected $CO_2$. The storage site was 150 m thick saline aquifer located 825 m under the continental shelf. It was assumed that $CO_2$ leak was happened through the fault located 1,000 m away from the injection well. The injected $CO_2$ could migrate through the aquifer by both pressure difference driven by injection and buoyancy force. The enough pressure differences made it possible the $CO_2$ to migrate to the bottom of the fault. The $CO_2$ could be leaked to seabed through the fault due to the buoyancy force. Prior to leakage of the injected $CO_2$, the formation water leaked to seabed. When $CO_2$ reached the seabed, leakage of formation water stopped but the same amount of sea water starts to flow into the underground as the amount of leaked $CO_2$. To analyze the effect of injection rate on the leakage behavior, the injection rate of $CO_2$ was varied as 0.5, 0.75, and $1MtCO_2/year$. The starting times of leakage at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 11.3, 15.6 and 23.2 years after the injection, respectively. The leakage of $CO_2$ to the seabed continued for a period time after the end of $CO_2$ injection. The ratios of total leaked $CO_2$ to total injected $CO_2$ at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 19.5%, 11.5% and 2.8%, respectively.

Modeling & Simulation Environment for Solving Waste Problems of the Local Community using Discrete Event System Formalism (지역사회 내 쓰레기 문제 해결을 위한 이산사건시스템 형식론 기반 모델링 및 시뮬레이션 환경)

  • Choi, Changbeom;Jung, Jinho;Lyoo, Changhyun;Kim, Eun-Young
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.1
    • /
    • pp.71-79
    • /
    • 2020
  • As the urbanization trend in modern society continues, the concentration of the population induces the urban problems in the residential area. One of the well-known issues among various urban problems is the garbage problem, which causes deterioration of the residential environment of citizens and directly affects the satisfaction of municipal administration. Such garbage problem cannot be accurately predicted by analyzing the amount of waste emitted from residential areas, but it is necessary to analyze the lifestyle and characteristics of residents living in residential areas. In this study, we propose an agent-based residential modeling and simulation environment using discrete event system formalism to analyze the garbage problem and satisfaction level according to the distribution of residents in the residential area. To model the behavior of the residents, we utilized the Atomic Model to capture the temporal behavior. Also, we used the Coupled Model to model the multi-family and the building to enhance the reusability of the simulation model. Also, this study carried out simulation modeling and simulation for a multi-family residential area. The simulation results of the multi-family housing area show that considering the characteristics of the residents gives better results compared to the simulation results without considering the characteristics.

Comparative Study on Seismic Performance of Viscously Damped Self-Centering SDOF Systems with Elasto-Plastic SDOF Systems (점성 감쇠기를 가진 셀프 센터링 단자유도 시스템과 탄소성거동의 단자유도 시스템의 내진성능 비교에 관한 연구)

  • Kim, Hyung-Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.553-561
    • /
    • 2010
  • The purpose of this paper is to analytically find the approximate supplement damping ratio of the viscous damper installed in self-centering (SC) single-degree-of-freedom (SDOF) systems with maximum displacements that are similar to those of elasto-plastic (EP) SDOF systems. The behavior of an SC SDOF system under harmonic cyclic loading was first described. Then an analytical model that can capture the behavior of the viscously damped SC SDOF system was introduced. Analysis parameters that characterize the hysteresis of the EP and SC SDOF systems were chosen, and nonlinear time-history analyses were performed using 20 historical accelerograms. Most of the SC SDOF systems with viscous dampers with approximately 10-15% damping ratios presented mean maximum displacement values that were similar to those of the EP SDOF systems. To investigate in detail the seismic performance of both systems, three EP SDOF systems and six corresponding SC SDOF systems were selected. The analyses showed that all the SC SDOF systems eliminated the residual displacements after the end of their shaking, and that the SC SDOF systems with 15% damping ratios performed better than the EP SDOF systems in terms of maximum displacement and acceleration response.

Numerical Analysis of CO2 Behavior in the Subsea Pipeline, Topside and Wellbore With Reservoir Pressure Increase over the Injection Period (시간 경과에 따른 저류층 압력 상승이 파이프라인, 탑사이드 및 주입정 내 CO2 거동에 미치는 영향에 대한 수치해석적 연구)

  • Min, Il Hong;Huh, Cheol;Choe, Yun Seon;Kim, Hyeon Uk;Cho, Meang Ik;Kang, Seong Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.286-296
    • /
    • 2016
  • Offshore CCS technology is to transport and inject $CO_2$ which is captured from the power plant into the saline aquifer or depleted oil-gas fields. The more accumulated injected $CO_2$, the higher reservoir pressure increases. The increment of reservoir pressure make a dramatic change of the operating conditions of transport and injection systems. Therefore, it is necessary to carefully analyze the effect of operating condition variations over the injection period in early design phase. The objective of this study is to simulate and analyze the $CO_2$ behavior in the transport and injection systems over the injection period. The storage reservoir is assumed to be gas field in the East Sea continental shelf. The whole systems were consisted of subsea pipeline, riser, topside and wellbore. Modeling and numerical analysis were carried out using OLGA 2014.1. During the 10 years injection period, the change of temperature, pressure and phase of $CO_2$ in subsea pipelines, riser, topside and wellbore were carefully analyzed. Finally, some design guidelines about compressor at inlet of subsea pipeline, heat exchanger on topside and wellhead control were proposed.

Observation Training Research of Stanislavski School for Creating the Role (역할 창조를 위한 스타니슬랍스키 학파의 관찰훈련 연구)

  • Ha, Byoung-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.1
    • /
    • pp.585-593
    • /
    • 2017
  • This study is about an observation, namely, the starting point of a role creation with playing a bridge role regarding the work of the role at the work with oneself in the actor training program of the stanislavsky school called the bible about the reenactment acting which is the most basic study of the performance, and in the circumstance of theatrical circles of Korea, which relatively have a lack of the research as mentioned earlier, it described the necessity, usefulness and types of the observation as well as methods of a stepwise observation. First of all, actors should capture observing targets suitable for a role in the play, and if the targets were captured, he needs to imitate and then learn it by using his own body In addition, it must go through the process of an extended application by an adjustment, an amplification, and the application depending on the circumstances of the role after understanding the principle of physical behavior. Also, in order to overcome the simple duplication of outward appearance, making it his own should be conducted through the process of learning it by body and identification by attempting empathy, and for become not the process of the observations which can be partially and fragmentarily finished but the whole acts handling the whole play, it requires the actors to continuously make efforts to create the role, designed to be appropriate for the role while comprehensively arranging each behavior of fragmented figures.

A Study on the Compensation of the Difference of Driving Behavior between the Driving Vehicle and Driving Simulator (가상주행과 실차주행의 운전자 주행행태 차이에 관한 연구)

  • Park, Jinho;Lim, Joonbeom;Joo, Sungkab;Lee, Soobeom
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.107-122
    • /
    • 2015
  • PURPOSES : The use of virtual driving tests to determine actual road driving behavior is increasing. However, the results indicate a gap between real and virtual driving under same road conditions road based on ergonomic factors, such as anxiety and speed. In the future, the use of virtual driving tests is expected to increase. For this reason, the purpose of this study is to analyze the gap between real and virtual driving on same road conditions and to use a calibration formula to allow for higher reliability of virtual driving tests. METHODS : An intelligent driving recorder was used to capture real driving. A driving simulator was used to record virtual driving. Additionally, a virtual driving map was made with the UC-Win/Road software. We gathered data including geometric structure information, driving information, driver information, and road operation information for real driving and virtual driving on the same road conditions. In this study we investigated a range of gaps, driving speeds, and lateral positions, and introduced a calibration formula to the virtual record to achieve the same record as the real driving situation by applying the effects of the main causes of discrepancy between the two (driving speed and lateral position) using a linear regression model. RESULTS: In the virtual driving test, driving speed and lateral position were determined to be higher and bigger than in the real Driving test, respectively. Additionally, the virtual driving test reduces the concentration, anxiety, and reality when compared to the real driving test. The formula includes four variables to produce the calibration: tangent driving speed, curve driving speed, tangent lateral position, and curve lateral position. However, the tangent lateral position was excluded because it was not statistically significant. CONCLUSIONS: The results of analyzing the formula from MPB (mean prediction bias), MAD (mean absolute deviation) is after applying the formula to the virtual driving test, similar to the real driving test so that the formula works. Because this study was conducted on a national, two-way road, the road speed limit was 80 km/h, and the lane width was 3.0-3.5 m. It works in the same condition road restrictively.

Clustering of Smart Meter Big Data Based on KNIME Analytic Platform (KNIME 분석 플랫폼 기반 스마트 미터 빅 데이터 클러스터링)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.13-20
    • /
    • 2020
  • One of the major issues surrounding big data is the availability of massive time-based or telemetry data. Now, the appearance of low cost capture and storage devices has become possible to get very detailed time data to be used for further analysis. Thus, we can use these time data to get more knowledge about the underlying system or to predict future events with higher accuracy. In particular, it is very important to define custom tailored contract offers for many households and businesses having smart meter records and predict the future electricity usage to protect the electricity companies from power shortage or power surplus. It is required to identify a few groups with common electricity behavior to make it worth the creation of customized contract offers. This study suggests big data transformation as a side effect and clustering technique to understand the electricity usage pattern by using the open data related to smart meter and KNIME which is an open source platform for data analytics, providing a user-friendly graphical workbench for the entire analysis process. While the big data components are not open source, they are also available for a trial if required. After importing, cleaning and transforming the smart meter big data, it is possible to interpret each meter data in terms of electricity usage behavior through a dynamic time warping method.