• Title/Summary/Keyword: Capsule Endoscope

Search Result 40, Processing Time 0.047 seconds

Design and Implementation of the RF Systems for Bi-directional Wireless Capsule Endoscopes

  • Moon, Yeon-Kwan;Lee, Jyung-Hyun;Park, Hee-Joon;Lee, Ju-Gab;Ryu, Jae-Jong;Lee, Wu-Seong;Woo, Sang-Hyo;Won, Chul-Ho;Cho, Jin-Ho;Choi, Hyun-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1669-1680
    • /
    • 2006
  • This paper explains that the RF systems for hi-directional wireless capsule endoscopes were designed and implemented. The designed RF systems for a capsule endoscope can transmit the images of intestines from the inside to the outside of a body and the behavior of the capsules can be controlled by an external controller simultaneously. The hi-directional wireless capsule endoscope consists of a CMOS image sensor, FPGA, LED, battery, DC to DC Converter, transmitter, receiver, and antennas. The transmitter and receiver which were used in the hi-directional capsule endoscope, were designed and fabricated with $10mm(diameter){\times}3.2mm(thickness)$ dimensions taking into the MPE, power consumption, system size, signal to noise ratio and modulation method. The RF systems designed and implemented for the hi-directional wireless capsule endoscopes system were verified by in-vivo experiments. As a result, the RF systems for the hi-directional wireless capsule endoscopes satisfied the design specifications.

  • PDF

Motion Characteristics of Smart Capsule with Triangular Arrangement of Actuators (삼각 배치 구동에 의한 스마트 캡슐의 이동 특성)

  • 임형준;민현진;김병규;김수현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.854-857
    • /
    • 2001
  • At present, colonoscopy is performed by means of quite long and flexible endoscopes and controlled manually. Although the flexibility of the distal tip allows the endoscope to follow the tortuous path of the colon, the insertion of the endoscope requires the endoscopist to exert forces on and to perform rotations of the proximal end; these actions cause discomfort to the patient. Though self-propelling colonoscopic systems has been suggested to overcome these problems, it is difficult to pass through highly curved regions of the intestine. In this paper, we introduce a steering mechanism for a self-propelling coloinlscope, the smart capsule, which has three actuator units. The mechanism is designed not only to move forward and backward but also to pass through the curved regions. We derived the governing equations of this mechanism. Active movements and motion control are developed.

  • PDF

An Implementation of HBC System for Capsule Endoscope (캡슐내시경을 위한 HBC시스템 구현)

  • Kim, Ki-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.215-221
    • /
    • 2018
  • In this paper, a comprehensive design of HBC(Human Body Communication) system for capsule endoscope is presented. First, we propose a method of combining the signals received from multiple patches attached to the body of patient through differential operation and derive the signal SNR mathematically. To synchronize HBC transmission signal sent from capsule, we analyzed coarse timing synchronization method using PN code and fine timing synchronization performance among Manchester, NRZ and RZ modulation method using ZCD(Zero Crossing Detector). In addition, we evaluated the equalization performance of HBC signal frame in Rician and Rayleigh channel environments by applying LMS and RLS algorithm.

Design and fabrication of the Locomotive Mechanism for Capsule Endoscopes Using Shape Memory Alloys (SMA) (SMA를 이용한 캡슐 내시경의 이동메커니즘 설계 및 제작)

  • Lee, Seung-Hak;Kim, Byung-Kyu;Park, Jong-H.;Park, Jong-Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1849-1855
    • /
    • 2003
  • Newly commercialized wireless capsule endoscope has many advantages compared to conventional push-type endoscopes. However, it is moved by the peristaltic waves. Therefore, it can not diagnose desired zones actively. In this paper, a locomotive mechanism for wireless capsule endoscope is proposed to increase the efficiency of endoscopy. We designed and fabricated a prototype using SMA springs and bio-mimetic clamping device. The hollow space in the prototype is allocated for further system integration of a camera module, a RF module and a battery. And the sequential control scheme is employed to improve the efficiency of its locomotion. To validate the performance of the locomotive mechanism, experiments on a silicone rubber pad and in vitro tests are carried out. The results of the experiments indicate that proposed mechanism is effective in harsh environments such as digestive organs of a human.

CPLD-based Controller for Bi-directional Communication in a Capsule Endoscope (캡슐형 무선 내시경의 양방향 통신을 위한 CPLD 기반의 제어기 설계 및 구현)

  • Lee Jyung Hyun;Moon Yeon Kwan;Park Hee Joon;Won Chul Ho;Lee Seung Ha;Choi Hyun Chul;Cho Jin Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.447-453
    • /
    • 2004
  • In the case of a capsule that can acquire and transmit images from the intestines, the size of the module and the battery capacity in the capsule are subject to restriction. The capsule must be swallowable and the battery must maintain the stable power during the capsule travels in the gastrointestinal tract. Therefore, it is important to control the endoscope using bi-directional wireless communication. In this study, encoder and decoder CPLD modules for bi-directional capsule endoscopes were designed and implemented. The designed controller for capsule endoscope can transmit the images of GI-track from inside to outside of the body and the capsules can be controlled by external controller simultaneously. The designed and implemented controller was verified by an in-vivo animal experiments. From these experiments, it was verified that the CPLD module for bi-directional capsule endoscope satisfied the design specifications.

Development of a Wheel Type Locomotive Mechanism Using Micro motor for a Capsule-Type Endoscope (모터를 이용한 바퀴형 체내이동 메커니즘의 개발)

  • Lee, Young-Jae;Kim, Byung-Kyu;Lim, Young-Mo;Park, Jong-Oh;Hong, Yeh-Sun;Kim, Soo-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.289-294
    • /
    • 2001
  • The two prototypes of a Wheel Type Locomotive Mechanism Using Micro motor for a Capsule-Type Endoscope are outlined and realized. Basic concept of these mechanisms is to use a rod-shaped wheel, with which these mechanisms can go over the haustral folds inside colon. The actuator of Prototype I is geared dc motor and the actuator for steering is Shape Memory Alloy. Prototype I goes through the whole area of colonoscopy training model. Prototype II can not only go forward and backward, but also be steerable with 2 geared dc motors. Prototype II goes through dead pig colon.

  • PDF

A method of assisting small intestine capsule endoscopic lesion examination using artificial neural network (인공신경망을 이용한 소장 캡슐 내시경 병변 검사 보조 방법)

  • Wang, Tae-su;Kim, Minyoung;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.2-5
    • /
    • 2022
  • Human organs in the body have a complex structure, and in particular, the small intestine is about 7m long, so endoscopy is not easy and the risk of endoscopy is high. Currently, the test is performed with a capsule endoscope, and the test time is very long. The doctor connects the removed storage device to the computer to store the patient's capsule endoscope image and reads it using a program, but the capsule endoscope test results in a long image length, which takes a lot of time to read. In addition, in the case of the small intestine, there are many curves due to villi, so the occlusion area or light and shade of the image are clearly visible during the examination, and there may be cases where lesions and abnormal signs are missed during the examination. In this paper, we provide a method of assisting small intestine capsule endoscopic lesion examination using artificial neural networks to shorten the doctor's image reading time and improve diagnostic reliability.

  • PDF

Magnetic Impact Actuator for Robotic Endoscope (대장내시경을 위한 자기 충격 액츄에이터)

  • 민현진;임형준;김병규;김수현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.839-843
    • /
    • 2001
  • For robotic endoscope, some researchers suggest pneumatic actuators based on inchworm motion. But, the existing endoscopes are not seemed to be replaced completely because human intestine is very sensitive and susceptible to damage. We design and test a new locomotion of robotic endoscope able to maneuver safely in the human intestine. The actuating mechanism is composed of two solenoids at each side and a single permanent magnet. When the current direction is reversed, repulsive force and attractive at the opposition side propels permanent magnet. Impact force against robotic endoscope transfer momentum from moving magnet to endoscope capsule. The direction and moving speed of the actuator can be controlled by adjusting impact force. Modeling and simulation experiments are carried out to predict the performance of the actuator. Simulation experiments show that force profile of permanent magnet is the dominant factor for the characteristic of the actuator. The results of simulations are verified by comparing with the experimental results.

  • PDF