• Title/Summary/Keyword: Capsids

Search Result 3, Processing Time 0.015 seconds

Development of A Monkey Kidney Cell Line Which Expresses Poliovirus Capsid Protein

  • Choi, Weon-Sang
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.4
    • /
    • pp.295-302
    • /
    • 1998
  • The RNA genome of poliovirus encodes a long polyprotein precursor and this polyprotein is cleaved proteolytically by viral protease to yield mature proteins. The mature proteins derived from the P1 polyprotein precursor are the component of capsids. To further delineate the process of capsid assembly and encapsidation, in a first attempt, a cell line which expresses the authentic P1 polyprotein was established. CV-1 cells were transfected with the pRCRSVS1P1 plasmid DNA which contains 5'ncr sequences, whole authentic capsid gene of poliovirus and neomycin resistance gene. These cells were treated with G418 for 3 months, and eventually G418 resistant cells were selected and formed colonies. Each colony was picked and grown in the media containing G418. DNA analysis indicated that 1 of 13 neomycin resistant cell lines (R2-18) contains whole poliovirus P1 capsid gene segment which was incorporated into the genome. Immuneprecipitation of cell lysates with sera from rabbit immunized with inactivateded Sabin type 1 particles demonstrated the constitutive expression of the poliovirus P1 capsid protein from R2-18.

  • PDF

Immunocytochemistry, In situ hybridization and electron microscopy for early diagnosis of Aujeszky's in living pigs (오제스키병의 생체 조기진단을 위한 면역세포화학, In situ hybridization 및 전자현미경적 연구)

  • Moon, Oun-kyong;Kim, Soon-bok;Sur, Jung-hyang;Song, Geun-suk;Nho, Whan-gook
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.4
    • /
    • pp.845-858
    • /
    • 1996
  • The purpose of this study was to establish early diagnostic methods for the detection of Aujeszky's disease viral antigens and nucleic acid in nasal cells, and buffy coats from experimentally infected living pigs by a combination of immunocytochemistry, in situ hybridization with digoxigenin(DIG)-labled probe and electron microscopy. Forty days old piglets were inoculated intranasally with $10^{7.0}TCID_{50}$ of Aujeszky's disease virus (ADV, NYJ-1-87 strain). The viral antigens and nucleic acid of ADV were detected in nasal cells, and buffy coat for 20 days after inoculation by immunocytochemistry, in situ hybridization with DIG-labeled probe and electron microscopical method. The results were compared with conventional methods such as a porcine Aujeszky's disease serodiagnostic(PAD) kit, neutralization test(NT) and virus isolation. 1. The viral antigens, nucleic acids and capsids of ADV were detected in nasal cells, buffy coats from 3 days to 20 days after inoculation by immunocytochemistry, in situ hybridization with DIG-labeled probe and electron microscopy, respectively. 2. When viral antigens were detected by the immunocytochemical technique, a diffuse brown deposit was observed in the nucleus and cytoplasm of nasal cells, buffy coats and PK-15 cells under a microscope. 3. DIG-labeled DNA probe was prepared by amplification of conserved sequence of recombinant ADV-gp50 clone with polymerase chain reacction. When ADV-DNA was detected by ISH with DIG-labeled probe, purplish blue pigmentation were observed in the nuclei and cytoplasms of ADV-infected cells under a microscope. Positive signals were observed in nasal cells and in the buffy coat and PK-15 cells at the first day after inoculation. 4. Where ADV-capsids were detected by transmission electron microscopical method, aggregation of capsids was observed in the nuclei and cytoplasms of nasal cells, buffy coats and PK-15 cells. The results suggested that these methods were considered as the highly sensitive and reliable tools for rapid and confirmative diagnosis of Aujeszky's disease in living pigs.

  • PDF

The Inactivation Effects of UV Light on Bacteriophage f2 (박테리오파지 f2에 대한 자외광선의 살균효과)

  • Kim, Chi-Kyung;Quae Chae
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.3
    • /
    • pp.155-161
    • /
    • 1983
  • The effects of ultraviolet light on bacteriophage f2 were investigated to determine the inactivation kinetics and its mechanism. The 260nm light showed a little higher inactivation rate than the one of 300 nm. In this work, our main concern was whether structural and/or conformational changes in the protein capsid could occur by UV irradiation. The inactivation for the first 20 minutes irradiation was rapid with a loss of about 4 logs and followed by a slower rate during the next 40 minutes with no survival noted in the samples irradiated for 90 minutes or longer. The structural change of the protein capsid was examined by optical spectroscopic techniques and electron microscopy. The absorption spectra of the UV irradiated phages showed no detectable differences in terms of the spectral shape and intensity from the control phage. However, the fluorescence emission spectroscopic data, i.e. 1) fluorescence quenching of tryptophan residues upon irradiation of 300 nm light, 2) enhancement of fluorescence emission of ANS (8-aniline-1-naphthalene sulfonate) bound to the intact phages compared to the one in the UV-treated phages, and 3) decrease of energy transfer efficiency from tryptophan to ANS in the UV-treated samples, presented remarkable differences between the intact and UV-treated phages. Such a structural alteration was also observed by electron microscopy The UV-treated phages appeared to be broken and empty capsids. Therefore, the inactivation of the bacteriophage f2 by UV irradiation is thought to be attributed to the structural change in the protein capsid as well as damage in the viral RNA by UV irradiation.

  • PDF