• Title/Summary/Keyword: Capillary viscometer

Search Result 39, Processing Time 0.022 seconds

Acoustic Viscosity Characteristics of Oils with High Molecular Weight VI Improver Additives (고분자량 점도지수향상제가 첨가된 오일의 음향점도 특성)

  • Kong, H.;Ossia, C.V.;Han, H.G.
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.236-242
    • /
    • 2009
  • Oil viscosity is one of the important parameters for machinery condition monitoring. Basically, it is expressed as kinematic viscosity measured by capillary flow and dynamic or absolute viscosity measured by rotary shear viscometry. Recently, acoustic wave techniques appear in the market, measuring viscosity as the product of dynamic viscosity and density. For Newtonian fluids, knowledge of density allows conversion from one viscosity parameter to the other at a specific shear rate and temperature. In this work, oil samples with different chain lengths of viscosity index (VI) improvers and concentrations were examined by different viscometric techniques. Results showed that acoustic viscosity measurements give misleading results for oil samples with high molecular weight VI improvers and at low temperatures ${\leq}40^{\circ}C$.

A Study on the Drag and Heat Transfer Reduction Phenomena and Degradation Effects of the Viscoelastic Fluids (점탄성유체의 저항 및 열전달 감소현상과 퇴화의 영향에 관한 연구)

  • Eum, C.S.;Jeon, C.Y.;Yoo, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.37-48
    • /
    • 1990
  • The drag and heat transfer reduction phenomena and degradation effects of drag reducing polymer solutions which are known as the viscoelastic fluids are investigated experimentally for the turbulent circular tube flows. Two stainless steel tubes are used for the experimental flow loops. Aqueous solutions of Polyacrylamide Separan AP-273 with concentrations from 300 to 1000 wppm are used as working fluids. Flow loops are set up to measure the friction factors and heat transfer coefficients of test tubes in the once-through system and the recirculating flow system. Test tubes are heated by power supply directly to apply constant heat flux boundary conditions on the wall. Capillary tube viscometer and falling ball viscometer are used to measure the viscous characteristics of fluids and the characteristic relaxation time of a fluid is determined by the Powell-Eyring model. The order of magnidude of the thermal entrance length of a drag reducing polymer solution is close to the order of magnitude of the laminar entrance length of Newtonian fluids. Dimensionless heat transfer coefficients of the viscoelastic non-Newtonian fluids may be represented as a function of flow behavior index n and newly defined viscoelastic Graetz number. As degradation continues viscosity and the characteristic relaxation time of the testing fluids decrease and heat transfer coefficients increase. The characteristic relaxation time is used to define the Weissenberg number and variations of friction factors and heat transfer coefficients due to degradation are presented in terms of the Weissenberg number.

  • PDF

Effect of Moisture Content on Viscosity of Starch Dough (전분반죽의 점도에 미치는 수분함량의 영향)

  • Lee, Boo-Yong;Lee, Chang-Ho;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.582-592
    • /
    • 1995
  • To measure rheological properties of the starch dough, an Extrusion Capillary Viscometer(ECV) cell was self-made and attached to Instron machine(Model 1140). Apparent viscosities of corn and waxy corn starch doughs were measured and their gelatinization degrees were determined by enzymatic analysis. When corn and waxy corn starch doughs with $36{\sim}52%$ moisture content were heated at $60{\sim}100^{\circ}C$, come-up time of the cold point of doughs decreased from 220 sec to 140 sec with increased in the moisture content. In the measurement range of $36{\sim}52%$ moisture content and $60{\sim}100^{\circ}C$ heating temperature, both corn and waxy corn starch doughs showed pseudoplastic flow behaviors. At the same shear rate, both shear stress and viscosity of starch dough decreased as the moisture content increased. At the moisture content above 44%, the shear stress and viscosity of starch dough decreased as the heating temperature increased from $60^{\circ}C\;to\;70^{\circ}C$, but increased as the heating temperature increased from $80^{\circ}C\;to\;100^{\circ}C$. When the moisture content increased and heating temperature, the gelatinization degree of starch dough increased from about 10% to about 62%. The gelatinization degree of waxy corn starch dough was $15{\sim}20%$ higher than that of corn starch dough under the same gelatinization conditions. The effects of moisture content on the viscosity of starch dough were examined by Arrhenius equation. As the moisture content increased, viscosity of starch dough decreased. But the effect of moisture content was greater in the range of $80{\sim}100^{\circ}C$ than in the range of $60{\sim}70^{\circ}C$ heating temperature.

  • PDF

Densities, Viscosities and Excess Properties of 2-Bromopropane - Methanol Binary Mixtures at Temperature from (298.15 to 318.15) K (298.15~318.15 K 에서 2-브로모프로판-메탄올 이성분 혼합물의 밀도, 점성도, 여분 성질)

  • Li, Hua;Zhang, Zhen;Zhao, Lei
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.71-76
    • /
    • 2010
  • The densities and viscosities of 2-bromopropane-methanol binary mixtures had been determined using an digital vibrating U-tube densimeter and Ubbelohde capillary viscometer respectively from (298.15 to 318.15) K. The dependence of densities and viscosities on temperature and concentration had been correlated. The excess molar volume and the excess viscosity of the binary system were calculated from the experimental density and viscosity data. The excess molar volumes were related to compositions by polynomial regression and regression parameters and total RMSD deviations were obtained; the excess viscosities was related to compositions by Redlich-Kister equation and regression coefficients and total RMSD deviation of the excess viscosity for 2-bromopropane and methanol binary system were obtained. The results showed that the model agreed very well with the experimental data.

A Study on the Heated Edible Oils(II) -Flow Properties and Changes of Fatty Acid Compositions on the Rice Bran Oil- (가열식용유(加熱食用油)에 관(關)한 연구(硏究)(II) -미(米)강유(油)의 유동성(流動性)과 지방산변화(脂肪酸變化)에 관(關)해서-)

  • Kim, Eun-Ae;Jeong, Tae-Myoung;Kim, Haeng-Ja;Park, Jea-Ok
    • Journal of Nutrition and Health
    • /
    • v.11 no.1
    • /
    • pp.33-37
    • /
    • 1978
  • The effect of heating time (0 to 30 hours at $180{\pm}5^{\circ}C$) on the change of flow properties, fatty acid compositions and some other characteristics such as acid value, iodine value, peroxide value and density of purified edible rice bran oil were observed. flow properties were measured with Maron-Belner type capillary viscometer. Newtonian motion was observed in non-heated oil and the oil heated for 5 hours but non-Newtonian motion was observed in the oil heated for more than 10 hours and at high shear stress. The fatty acid compositions were analyzed by gas liquid chromatography and all the components of fatty acids were reduced in amounts with extention of heating time. The acid value, peroxide value and density were increased but iodine value were decreased with extension of heating time.

  • PDF

An experimental study on the viscosity of visco-elastic fluids (점탄성유체의 점성에 관한 실험적 연구)

  • 김춘식;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.21-41
    • /
    • 1982
  • Viscosity, especially characteristic among various properties of visco-elastic fluids such as high polymer solutions, is affected mainly by temperature and concentration. Hence, it is important for fluid engineering to express, by some equations, how the fluid characteristics vary with the change of temperature and concentration and to analyze them to obtain consistent viscous characteristics. High polymer solutions, synthetic products of modern chemical industry, suggest many interesting investigations because they are typical visco-elastic materials. Experimentation was made to derive some useful fluid characteristic equations of SEPARAN-NP10 (polyacylamide) expressed by n (flow behavior index) and K' (consistency index) when it is given temperature and concentration variation. To measure viscosity, capillary viscometer was adopted and the range of experimentation is 0-2,000 P.P.M. in concentration and 15-55 .deg.C in temperature. The experimental results are summarized as follows: The flow behavior index n 1) has nearly constant results irrespective of temperature variation at same conentration and the results are shown in (Table. 4-4-3) 2) has following equation, regardless of temperature, for the variation of concentration. n=-1.0765*10$^{-4}$ P+0.9915 (P:P.P.M.) The consistency index K' 1) has different results for the variation of temperature at same concentration and the results are given in (Table.4-7-2) 2) has following equation for the variation of concentration at same temperature. log 10$^{4}$K' =6.4785*10$^{-4}$ P-1.0529 (P:P.P.M)

  • PDF

Effect of Molecular Weight and NaCI Concentration on Dilute Solution Properties of Chitosan

  • Hwang, Jae-Kwan;Hong, Sang-Pill;Kim, Chong-Tai
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.1
    • /
    • pp.1-5
    • /
    • 1997
  • Solution Properties of polyelectrolytic biopolymers such as chitosen, pectin, alginate and etc. are significantly influenced by molecular weight and salt concentrations. The effect of NaCI concentration on the hydrodynamic properties of chitosan in dilute region was investigated for chitosans of varying molecular weight. Intrinsic vicosity([η]) of citosans with 5 different molecular weight was determined by glass capillary viscometer, and the viscosity average molecular weight was calculated using Mark-Houwink equation. Intrinsic viscosity decreased with increasing NaCI concentration for all chitosan samples, and it was proportional to the logarithmic NaCI concentration, i.e.,[η]∝log{TEX}$(C_{NaCl})^{$\alpha$}${/TEX}. Decreasing trend of[η] with NaCI concentration became more pronounced with increasing molecular weight. It was also found that the a values, indicating {TEX}$C_{NaCl}${/TEX} dependence of[η], were linearly correlated with the logarithmic molecular weight({TEX}$R^{2}${/TEX}=0.980). The chain stiffness parameters(B) were calculated by B=S./{TEX}$([η]_{0.1})^{1.32}${/TEX}, in which S was obtained from slope of [η] va {TEX}$I^{-1/2}${/TEX}. The B values of chitosan samples were determined to be 0.113~0071 with a average of 0.09.

  • PDF

The heat transfer characteristics of viscoelastic non-newtonian fluids in the entrance region of circular tube flows (원형관속을 유동하는 점탄성 유체의 입구 영역 열전달 특성에 관한 연구)

  • 엄정섭;황태성;유상신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.1032-1043
    • /
    • 1989
  • The heat transfer characteristics of the drag reducing polymer solutions are investigated experimentally in the thermal entrance region of circular tube flows. Fluids used in experiments are the aqueous solutions of high molecular polymer, polyacrylamide Separan AP-273 and the range of polymer concentrations is from 20 to 1000 wppm. Two stainless steel tubes with inside diameter 8.5mm(L/D=712) and 10.3mm(L/D=1160) are used for the heat transfer flow loops. The flow loop is set up to measure friction factors and heat transfer coefficients of test sections in two different modes; the recirculating flow system and once-through flow system. The test tubes are heated directly by electricity to apply the constant heat flux boundary conditions to the wall. Three different types of adaptors are used to observe the effects of the upstream flow conditions of the heat transfer test sections. The viscosity and characteristic relaxation time of the test fluids circulating in the flow system are measured by the capillary tube viscometer and falling ball viscometer at regular time intervals. The installed adaptors exhibit slight effect on the entrance heat transfer of Newtonian fluid. However, no noticeable effects are observed for the entrance heat transfer of the drag reducing fluids. The order of magnitude of the thermal entrance lengths of the drag reducing fluids which follow the minimum friction asymptote is much longer than that of Newtonian fluids in turbulent flows. A new dimensionless parameter, the viscoelastic Graetz number, is defined and all the experimental data are recasted in terms of the viscoelastic Graetz number. The local Nusselt number of the viscoelastic fluids is represented as a function of flow behavior index n and the viscoelastic Graetz number. As degradation continues the viscosity and the characteristic relaxation time of the testing fluids decrease. Weissenberg number defined by the relaxation time and D/V appears to be a proper dimensionless parameter in describing degradation effects on heat transfer of the viscoelastic fluids.

Rheological Studies of Greases (潤滑油의 粘性學的 硏究)

  • Shao Mu Ma;Tai Kyu Ree
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.173-184
    • /
    • 1976
  • A steel capillary viscometer was built for the study of rheological properties of greases. Bentone greases with thickener concentration of 2.0, 4.0, 6.0, 8.0, and 10.0 weight percent and lime-soap greases with soap concentrations of 2.4, 7.0, 9.3, 12.1 and 15.2 weight percent were studied. Capillaries with various radii R and lengths L were used to study the resident-time effect on the flow properties of lime soap greases. Detailed studies on bentone greases were conducted using a capillary with a fixed size. The results were analyzed by using Ree-Eyring flow equation. The factors appearing in the latter, ($X_1{\beta}_1/{\alpha}_1$ for Newtonian units, $X_2/{\alpha}_2$ and ${\beta}_2$ both for non-Newtonian units), were studied in order to investigate how they change with thickener concentrations and temperatures. Through this analysis, we have found that TEX>${\Delta}H_1^{\neq}$ and ${\Delta}H_2^{\neq}$, the activation enthalpies for flow of type-1 unit and of type-2 unit, respectively, are approximately equal to that of the base oil, the solvent. From this fact, it is concluded that these type units flow into the holes which were produced by the movement of solvent molecules. For bentone greases, the ${\beta}_2$ is about constant independent of concentration at a given temperature as found in the literature. The resident-time effect has not been clearly demonstrated in this research; this is due partly to the nature of the greases used in our research and partly to the small values of L/R of our capillaries, the resident time being proportional to the value L/R.

  • PDF

Studies on the Change in Rheological Properties of Chungkook-jang (청국장의 물성 변환에 대한 연구)

  • Lee, Boo-Yong;Kim, Dong-Man;Kim, Kil-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.478-484
    • /
    • 1991
  • As a work on the preparation of spread type product using chungkook-jang, proximate composition and enzyme activity of chungkook-jang were analyzed and extrusion capillary viscometer was made. The effects of moisture content, oil type and content and temperature on the rheological properties of chungkook-jang spread were investigated. As the moisture content of chungkook-jang spread increased from 55% to 65%, apparent viscosity $({\eta}a)$ decreased and spreadibility and L value in Hunter color system increased. On the contrary, as the added oil content of chungkook-jang spread increased from 10% to 30%, rla increased and spreadibility and L value decreased. Specially, in case of palm olefin addition, the rla of chungkook-jang spread was more high than that of soybean oil addition. As the temperature of chungkook-jang spread increased, rla decreased and spreadibility increased. In the same conditions, the ${\eta}a$ of chungkook-jang spread increased in order of B. natto, B. natto and B. subtilis mixture and B. subtilis fermentation.

  • PDF