• Title/Summary/Keyword: Capillary flow

Search Result 386, Processing Time 0.027 seconds

Fabrication of Metal Gas Filter by Material Extrusion Additive Manufacturing Process

  • Yu-Jeong Yi;Min-Jeong Lee;Su-Jin Yun;Manho Park;Ju-Yong Kim;Jungwoo Lee;Jung-Yeul Yun
    • Archives of Metallurgy and Materials
    • /
    • v.67 no.4
    • /
    • pp.1517-1520
    • /
    • 2022
  • Recently, 3D printing processes have been used to manufacture metal powder filters with manufacturing complex-shape. In this study, metal powder filters of various shapes were manufactured using the metal extrusion additive manufacturing (MEAM) process, which is used to manufacture three-dimensional structures by extruding a filament consisting of a metal powder and a binder. Firstly, filaments were prepared by appropriately mixing SUS316 powder with sizes ranging from 7.5 ㎛ to 50 ㎛ and a binder. These filaments were extruded at temperatures of 100℃ to 160℃ depending on the type of filament being manufactured, to form three types of cylindrical filter. Specimens were sintered in a high vacuum atmosphere furnace at 850℃ to 1050℃ for 1 hour after debinding. The specimens were analyzed for permeability using a capillary flow porometer, porosity was determined by applying Archimedes' law and microstructure was observed using SEM.

Microstructure and Pore Characteristics of a SUS316L Gas Filter Fabricated by Wet Powder Spraying

  • Min-Jeong Lee;Yu-Jeong Yi;Hyeon-Ju Kim;Manho Park;Jungwoo Lee;Jung-Yeul Yun
    • Archives of Metallurgy and Materials
    • /
    • v.67 no.4
    • /
    • pp.1547-1550
    • /
    • 2022
  • In this study, a flake-shaped metal powder was coated on a tube shaped pre-sintered 316L stainless steel support using a wet powder spraying process to fabricate a double pore structure, and the pore characteristics were analyzed according to coating time and tube rotation speed. The thickness of the coated layer was checked via optical microscopy, and porosity was measured using image analysis software. Air permeability was measured using a capillary flow porometer. As a result of the experiment, the optimal rotation speed of the support tube was established as 200 rpm. When the rotation speed was fixed, the coating thickness and the coating amount of the double pore structure increased as the coating time increased. The porosity of the double pore structure was increased due to the irregular arrangement of the flake-shaped powder. The air permeability of the double pore structure decreased with increasing fine pore layer thickness.

Modelling of Permeability Reduction of Soil Filters due to Clogging (흙 필터재의 폐색으로 인한 투수성 저하 모델 개발)

  • ;;Reddi, Lakshmi.N
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.271-278
    • /
    • 1999
  • Soil filters are commonly used to protect the soil structures from eroding and piping. When filters are clogged by fine particles which are progressively accumulated, these may lead to buildup of excessive pore pressures also leading to instability in subsurface infrastructure. A filter in the backfill of a retaining wall, a filter adjacent to the lining of a tunnel, or a filter in the bottom of an earth dam can be clogged by transported fine particles. This causes reduction in the permeability, which in turn may lead to intolerable decreases in their drainage capacity. In this thesis, the extent of this reduction is addressed using results from both experimental and theoretical investigations. In the experimental phase, the permeability reduction of a filter is monitored when an influent of constant concentration flows into the filter (uncoupled test), and when the water flow through the soil-filter system to simulate an in-situ condition (coupled test), respectively. The results of coupled and uncoupled test are compared with among others. In the theoretical phase of the investigation, a representative elemental volume of the soil filter was modeled as an ensemble of capillary tubes and the permeability reduction due to physical clogging was simulated using basic principles of flow in cylindrical tubes. In general, it was found that the permeability was reduced by at least one order of magnitude, and that the results from the uncoupled test and theoretical investigations were in good agreement. It is observed that the amount of deposited particles of the coupled test matches fairly well with that of the uncoupled test, which indicates that the prediction of permeability reduction is possible by preforming the uncoupled test instead of the coupled test, and/or by utilizing the theoretical model.

  • PDF

Development of a Method for Rapid Analysis of DNA Hybridization (측방유동방식 신속 DNA 교잡 분석법의 개발)

  • 정동석;최의열
    • Korean Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.114-117
    • /
    • 2003
  • In molecular biology, it is necessary to develop an easy and rapid method to identify a specific DNA sequence. Though Southern and Northern blot techniques have been used widely for the analysis of gene structure and function, those methods are inconvenient in the points that we need to control incubation temperature, time, and other parameters to get the final result. In this study, we report a new method for the rapid analysis of specific DNA sequence with the modification of an immunochromatographic method. The lateral flow DNA analysis strip is composed of a sample pad, a nitrocellulose membrane for the separation and propagation of analytes, and an absorption pad for the generation of capillary action. Capture DNA was immobilized on the membrane by UV cross-linking and target DNA was labeled with Cy-5 for signaling. The samples containing target DNA were applied onto the sample pad, incubated for 15 min for separation, and scanned with a GSI fluorescence scanner. Though the hybridization reaction occurs in a short time without any washing steps, there appears to be little cross hybridization between the different sequences. The result showed a possibility that the new method can be used for the rapid identification of specific DNA sequence among the samples.

Fouling Behavior of Bentonite Colloidal Suspensions in Microfiltration (벤토나이트 현탁액에 의한 정밀여과 막의 오염특성)

  • Nam, Suk-Tae;Han, Myeong-Jin
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.53-64
    • /
    • 2008
  • Fouling behavior of polyethylene capillary membranes was examined by measuring the flux of bentonite colloidal suspensions through the cross flow micro filtration. The membrane fouling was due to the three mechanisms: the cake formation on the membrane surface, the standard pore blocking and the complete pore blocking by particles. These mechanisms were simultaneously responsible for the membrane fouling, being significantly governed by the cake filtration. In the total fouling at $1.0kg/cm^2$ TMP condition, the complete blocking was 3.36%, the standard blocking 3.18% and the cake filtration 96.05%. For 1000 ppm feed solution, the complete blocking was 1.71% compared with the standard blocking of 1.90% and the cake filtration of 96.39%. And 96.14% of the total fouling was generated at the initial period of filtration. The cake filtration effect was larger on $0.34{\mu}m$ pore membrane than on $0.24{\mu}m$ pore membrane. With the increase in cross flow velocity, the component fouling decreased by 10.20%, and the ratio of pore blocking to total fouling increased.

The Usefulness of Surgical Treatment in Slow-Flow Vascular Malformation Patients

  • Kang, Gyu Bin;Bae, Yong Chan;Nam, Su Bong;Bae, Seong Hwan;Sung, Ji Yoon
    • Archives of Plastic Surgery
    • /
    • v.44 no.4
    • /
    • pp.301-307
    • /
    • 2017
  • Background Many difficulties exist in establishing a treatment plan for slow-flow vascular malformation (SFVM). In particular, little research has been conducted on the surgical treatment of SFVMs. Thus, we investigated what proportion of SFVM patients were candidates for surgical treatment in clinical practice and how useful surgical treatment was in those patients. Methods This study included 109 SFVM patients who received care at the authors' clinic from 2007 to 2015. We classified the patients as operable or non-operable, and analyzed whether the operability and the extent of the excision varied according to the subtype and location of the SFVM. Additionally, we investigated complications and self-assessed satisfaction scores. Results Of the 109 SFVM patients, 59 (54%) were operable, while 50 (46%) were non-operable. Total excision could be performed in 44% of the operable SFVM patients. Lymphatic malformations were frequently non-operable, while capillary malformations were relatively operable (P=0.042). Total excision of venous malformations could generally be performed, while lymphatic malformations and combined vascular malformations generally could only undergo partial excision (P=0.048). Complications occurred in 11% of the SFVM patients who underwent surgery; these were minor complications, except for 1 case. The average overall satisfaction score was 4.19 out of 5. Conclusions Based on many years of experience, we found that approximately half (54%) of SFVM patients were able to undergo surgery, and around half (44%) of those patients were able to fully recover after a total excision. Among the patients who underwent surgical treatment, high satisfaction was found overall and relatively few complications were reported.

Numerical simulation of electrokinetic dissipation caused by elastic waves in reservoir rocks

  • Zhang, Xiaoqian;Wang, Qifei;Li, Chengwu;Sun, Xiaoqi;Yan, Zheng;Nie, Yao
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • The use of electrokinetic dissipation method to study the fluid flow law in micro-pores is of great significance to reservoir rock microfluidics. In this paper, the micro-capillary theory was combined with the coupling model of the seepage field and the current field under the excitation of the harmonic signal, and the coupling theory of the electrokinetic effect under the first-order approximation condition was derived. The dissipation equation of electrokinetic dissipation and viscous resistance dissipation and its solution were established by using Green's function method. The physical and mathematical models for the electrokinetic dissipation of reservoir rocks were constructed. The microscopic mechanism of the electrokinetic dissipation of reservoir rock were theoretically clarified. The influencing factors of the electrokinetic dissipation frequency of the reservoir rock were analyzed quantitatively. The results show that the electrokinetic effect transforms the fluid flow profile in the pores of the reservoir from parabolic to wavy; under low-frequency conditions, the apparent viscosity coefficient is greater that one and is basically unchanged. The apparent viscosity coefficient gradually approaches 1 as the frequency increases further. The viscous resistance dissipation is two orders of magnitude higher than the electrokinetic effect dissipation. When the concentration of the electrolyte exceeds 0.1mol/L, the electrokinetic dissipation can be neglected, while for the electrolyte solution (<$10^{-2}M$) in low concentration, the electrokinetic dissipation is very significant and cannot be ignored.

Heat Dissipation Trends in Semiconductors and Electronic Packaging (반도체 및 전자패키지의 방열기술 동향)

  • S.H. Moon;K.S. Choi;Y.S. Eom;H.G. Yun;J.H. Joo;G.M. Choi;J.H. Shin
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.41-51
    • /
    • 2023
  • Heat dissipation technology for semiconductors and electronic packaging has a substantial impact on performance and lifespan, but efficient heat dissipation is currently facing limited improvement. Owing to the high integration density in electronic packaging, heat dissipation components must become thinner and increase their performance. Therefore, heat dissipation materials are being devised considering conductive heat transfer, carbon-based directional thermal conductivity improvements, functional heat dissipation composite materials with added fillers, and liquid-metal thermal interface materials. Additionally, in heat dissipation structure design, 3D printing-based complex heat dissipation fins, packages that expand the heat dissipation area, chip embedded structures that minimize contact thermal resistance, differential scanning calorimetry structures, and through-silicon-via technologies and their replacement technologies are being actively developed. Regarding dry cooling using single-phase and phase-change heat transfer, technologies for improving the vapor chamber performance and structural diversification are being investigated along with the miniaturization of heat pipes and high-performance capillary wicks. Meanwhile, in wet cooling with high heat flux, technologies for designing and manufacturing miniaturized flow paths, heat dissipating materials within flow paths, increasing heat dissipation area, and reducing pressure drops are being developed. We also analyze the development of direct cooling and immersion cooling technologies, which are gradually expanding to achieve near-junction cooling.

Design of Fluorescence Multi-cancer Diagnostic Sensor Platform based on Microfluidics (미세 유체 기반의 형광 다중 암 진단 센서 플랫폼 설계)

  • Lee, B.K.;Khaliq, A.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.55-61
    • /
    • 2022
  • There is a major interest in diagnostic technology for multiple cancers worldwide. In order to reduce the difficulty of cancer diagnosis, a liquid biopsy technology based on a microfluidic device using trace amounts of biofluids such as blood is being studied. And optical biosensing, which measures the concentration of analytes through fluorescence imaging using biofluids, requires various strategies to improve sensitivity, and specialists and equipment are needed to carry out these strategies. This leads to an increase in diagnostic and production costs, and it is necessary to develop a technology to solve this problem. In this paper, we design and propose a fluorescent multi-cancer diagnostic sensing platform structure that implements passive self-separation technology and molecular recognition activation functions by fluid mixing, only with the geometry and microfluidic phenomena of microchannels based on self-driven flow by capillary force. In order to check the parameters affecting the performance of the plasma separation part of the designed sensor, the hydrodynamic diameter of the channel and the viscosity of the fluid were set as variables to confirm the formation of plasma separation flow through simulation. And finally, we propose an optimal sensor platform structure.

Review for Mechanisms of Gas Generation and Properties of Gas Migration in SNF (Spent Nuclear Fuel) Repository Site (사용 후 핵연료 처분장 내 가스의 발생 기작 및 거동 특성 고찰)

  • Danu Kim;Soyoung Jeon;Seon-ok Kim;Sookyun Wang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.167-183
    • /
    • 2023
  • Gases originated from the final SNF (spent nuclear fuel) disposal site are very mobile in the barrier and they may also affect the migration of radioactive nuclides generated from the SNF. Mechanisms of gas-nuclide migration in the multi-barrier and their influences on the safety of the disposal site should be understood before the construction of the final SNF disposal site. However, researches related to gas-nuclide coupled movement in the multi-barrier medium have been very little both at home and abroad. In this study, properties of gas generation and migration in the SNF disposal environment were reviewed through previous researches and their main mechanisms were summarized on the hydrogeological evolution stage of the SNF disposal site. Gas generation in the SNF disposal site was categorized into five origins such as the continuous nuclear fission of the SNS, the Cu-canister corrosion, the oxidation-reduction reaction, the microbial activity, and the inflow from the natural barriers. Migration scenarios of gas in porous medium of the multi-barrier in the SNF repository site were investigated through reviews for previous studies and several gas migration types including ① the free gas phase flow including visco-capillary two-phase flow, ② the advection and diffusion of dissolved gas in pore water, ③ dilatant two-phase flow, and ④ tensile fracture flow, were presented. Reviewed results in this study can support information to design the further research for the gas-nuclide migration in the repository site and to evaluate the safety of the Korean SNF disposal site in view points of gas migration in the multi-barrier.