• Title/Summary/Keyword: Capillary flow

Search Result 382, Processing Time 0.028 seconds

Theoretical Analysis of Heat Transport Limitation in a Screen Mesh Wick Heat Pipe

  • Lee, Ki-Woo;Park, Ki-Ho;Lee, Wook-Hyun;Rhi, Seok-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • The purpose of the present study is to examine the heat transport limitations in a screen mesh heat pipe for electronic cooling by theoretical analysis. Diameter of pipe was 6mm, and mesh numbers were 50, 100, 150, 200 and 250, and water was investigated as working fluid. According to the change of mesh number, wick layer, inclination and saturation temperature, the maximum heat transport limitations by capillary, entraintment, sonic and boiling were analyzed by a theoretical design method of heat pipe, including capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, etc. Based on the results, the capillary limitation in a small diameter of heat pipe is largely affected by mesh number and wick layer. Mesh number of 250 is desirable not to be used in pipe diameter of 6 mm, because capillary heat transport limitation decreases by the abrupt increase of liquid friction pressure due to the small liquid flow area. For the heat transport of 15 watt in 6mm diameter pipe, mesh number of 100 and one layer is an optimum wick condition, which thermal resistance is the smallest.

Measurements of Flow Meniscus Movement in a Micro Capillary Tube (마이크로 원형 모세관에서 계면 이동 현상의 측정)

  • Lee, Sukjong;Sung, Jaeyong;Lee, Myeong Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • In this paper, a high-speed imaging and an image processing technique have been applied to detect the position of a meniscus as a function of time in the micro capillary flows. Two fluids with low and high viscosities, ethylene glycol and glycerin, were dropped into the entrance well of a circular capillary tube. The filling times of the meniscus in both cases of ethylene glycol and glycerin were compared with the theoretical models - Washburn model and its modified model based on Newman's dynamic contact angle equation. To evaluate the model coefficients of Newman's dynamic contact angle, time-varying contact angles under the capillary flows were measured using an image processing technique. By considering the dynamic contact angle, the estimated filling time from the modified Washburn model agrees well with the experimental data. Especially, for the lower-viscosity fluid, the consideration of dynamic contact angle is more significant than for the higher-viscosity fluid.

Experimental Analysis of the Effect of Phase Change at the Entrance of a Capillary Tube by Sub-cooling Control on Refrigerant-induced Noise (과냉도에 따른 모세관 입구단에서의 냉매 상태 변화가 냉장고 냉매 소음에 미치는 영향의 실험적 분석)

  • Oh, Young-Hoo;Kim, Min-Seong;Han, Hyung-Suk;Kim, Tae-Hoon;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1184-1190
    • /
    • 2012
  • This study is focused on the experimental analysis of the noise induced by phase change of refrigerant at the entrance of capillary tube. The refrigerant is usually two-phase condition when it flowed into the capillary tube. At the entrance of capillary tube, the phase condition of refrigerant is formed by sub-cool control. If it has sufficient sub-cool temperature, all of the vapor refrigerants turned to liquid, which means there is only liquid. Otherwise, the gas is coexisted. Based on this theory, we experiment on each case by changing sub-cool temperature using refrigerant-supplying equipment. The noise level is measured for each case and compared.

Analysis of Capillary Flow in Open-Top Rectangular Microchannel (상판이 없는 직사각형 단면의 미세채널에서 모세관 유동 분석)

  • Park, Eun-Jung;Cho, Ji-Yong;Kim, Jeong-Chul;Hur, Dae-Sung;Chung, Chan-Il;Kim, Jung-Kyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.77-82
    • /
    • 2010
  • Our study aims to understand the flow of liquid in an open-top rectangular microchannel that can be used in micro total analysis systems ($\mu$-TAS) because it has advantages in terms of light transmission and energy efficiency. We measured the liquid velocity using particle tracking technique and conducted a simulation with computational fluid dynamics by altering the area of channel cross section and channel length for the capillary-driven flow in the open-top rectangular microchannel. When liquid water drops to an entrance of the fabricated microchannel with a height of 20 μm and a width of 20 ${\mu}m$, it flows along the microchannel by only capillary force. In the wetting behavior of the liquid, important parameters of this flow are channel size, contact angle and liquid properties such as surface tension and viscosity, which are used to control the flow of liquid in the microchannel.

Analysis of Unsaturated Flow Considering Hysteresis in Porous Media under Antecedent Rainfall (선행강우가 존재하는 다공성 매질에서 이력현상을 고려한 비포화 흐름 해석)

  • Park, Chang Kun;Sonu, Jung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1137-1143
    • /
    • 1994
  • Through the numerical analysis of the capillary pressure-based Richards equation with and without the effect of the capillary hysteresis under the boundary condition having an antecedent rainfall. the moving tendency of the wetting front, the redistribution of the moisture content, infiltration rate, cumulative infiltration etc, were computed. The effect of the capillary hysteresis cannot be neglected in analyzing an unsaturated flow, and the more accurate results may be obtained by the consideration of the hysteresis effect. If the effect of the hysteresis cannot be considered, the analysis by the use of the main wetting curve may give more reliable result than that of the main drying curve.

  • PDF

Analysis of the Heat Transport Capacity of a Axial Grooved Heat Pipe for Solar Collector (태양열 집열기용 히트파이프의 열전달 특성에 대한 해석)

  • Chung, Kyung-Taek;Bae, Chan-Hyo;Suh, Jeong-Se;Kim, Byeong-Gi
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.317-322
    • /
    • 2005
  • This study is aimed to analyze the effects of heat pipe shape on the heat transfer in solar collector with a axial grooved heat pipe. In the design of a heat pipe. two of the most important criteria to be met are the operating temperature range and the maximum heat transport capacity, When the operating temperature range is known and the working fluid has been selected, the maximum heat transport capacity depends strongly on capillary pressure and liquid flow. The heat transport capacity of the heat pipe will depend on the geometry of the heat pipe, the wick structure. the vapor channel shape. groove number. cooling temperature. condenser length and pipe diameter. So various shapes are used for mathematical models of two-phase flow in grooved heat pipe. From the results. the adequate groove shape and scale are presented by considering the heat transport and capillary limitation.

  • PDF

Theoretical Modeling of Oscillation Characteristics of Oscillating Capillary Tube Heat Pipe

  • Bui, Ngoc-Hung;Kim, Jong-Soo;Jung, Hyun-Seok
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • The examinations of the operating mechanism of an oscillating capillary tube heat pipe (OCHP) using the visualization method revealed that the working fluid in the OCHP oscillated to the axial direction by the contraction and expansion of vapor plugs. The contraction and expansion were due to the formation and extinction of bubbles in the evaporating and condensing part, respectively The actual physical mechanism, whereby the heat which was transferred in such an OCHP was complex and not well understood. In this study, a theoretical model of the OCHP was developed to model the oscillating motion of working fluid in the OCHP. The differential equations of two-phase flow were applied and simultaneous non-linear partial differential equations were solved. From the analysis of the numerical results, it was found that the oscillating motion Of working fluid in the OCHP was affected by the operation and design conditions such as the heat flux, the charging ratio of working fluid and the hydraulic diameter of flow channel. The simulation results showed that the proposed model and solution could be used for estimating the operating mechanism in the OCHP.

GC Capillary Column Installation (가스 크로마토그래피 캐필러리 컬럼 설치 가이드)

  • Matt James;Kirsty Ford
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.2.1-2.6
    • /
    • 2024
  • This article provides detailed instructions for the correct installation, maintenance, and troubleshooting of capillary gas chromatography (GC) columns. It emphasizes the importance of proper installation to ensure optimal performance and longevity of the column. The document covers various aspects such as column trimming, installation, conditioning, testing, storage, and ferrule selection. The installation process involves ensuring that the heated zones of the GC are cool before placing the column cage in the column oven. It is essential to avoid sharp bends or stress on the capillary column during installation and to connect the front end of the column into the GC inlet at the recommended insertion distance. The document also provides guidance on trimming the column, including the use of a ceramic wafer or capillary column cutter to achieve a clean, burr-free cut. For previously used columns, it recommends removing any capillary caps, positioning the nut and ferrule, and trimming 1-2 cm from the column. After installation, the column should be purged with carrier gas to remove any oxygen and avoid oxidizing the column. Conditioning the column involves ramping to the upper isothermal temperature limit and maintaining this temperature for a specified duration. It is crucial to maintain carrier gas flow during conditioning and not exceed the upper temperature limit of the column to avoid phase damage. The document also discusses testing column performance using a suitable method and performing a test injection to assess performance. It provides recommendations for column storage, including flame-sealing the capillary ends or using retention gaps for long-term storage. Additionally, it emphasizes the importance of routine maintenance and replacement of GC consumables to extend the column's lifetime. Ferrule selection is another important aspect covered in the article, with a variety of ferrule materials available for different applications. The characteristics of common ferrule options are presented in a table, including temperature limits, reusability, and suitability for specific detector types.

  • PDF